PREDICTION OF BIRD SPECIES USING RANDOM FOREST ALGORITHM-INTERNET OF BIRDS

Author(s):  
Selva Ishwarya ◽  
Muthulakshmi S ◽  
Vijayalakshmi K ◽  
Kaliappan M ◽  
VIMAL SHANMUGANATHAN
2019 ◽  
Author(s):  
Bruno Tavares Padovese ◽  
Linilson Rodrigues Padovese

AbstractAvian survey is a time-consuming and challenging task, often being conducted in remote and sometimes inhospitable locations. In this context, the development of automated acoustic landscape monitoring systems for bird survey is essential. We conducted a comparative study between two machine learning methods for the detection and identification of 2 endangered Brazilian bird species from the Psittacidae species, the Amazona brasiliensis and the Amazona vinacea. Specifically, we focus on the identification of these 2 species in an acoustic landscape where similar vocalizations from other Psittacidae species are present. A 3-step approach is presented, composed of signal segmentation and filtering, feature extraction, and classification. In the feature extraction step, the Mel-Frequency Cepstrum Coefficients features were extract and fed to the Random Forest Algorithm and the Multilayer Perceptron for training and classifying acoustic samples. The experiments showed promising results, particularly for the Random Forest algorithm, achieving accuracy of up to 99%. Using a combination of signal segmentation and filtering before the feature extraction steps greatly increased experimental results. Additionally, the results show that the proposed approach is robust and flexible to be adopted in passive acoustic monitoring systems.


Author(s):  
A.E. Semenov

The method of pedestrian navigation in the cities illustrated by the example of Saint-Petersburg was investigated. The factors influencing people when they choose a route for their walk were determined. Based on acquired factors corresponding data was collected and used to develop model determining attractiveness of a street in the city using Random Forest algorithm. The results obtained shows that routes provided by the method are 14% more attractive and just 6% longer compared with the shortest ones.


2020 ◽  
Vol 15 (S359) ◽  
pp. 40-41
Author(s):  
L. M. Izuti Nakazono ◽  
C. Mendes de Oliveira ◽  
N. S. T. Hirata ◽  
S. Jeram ◽  
A. Gonzalez ◽  
...  

AbstractWe present a machine learning methodology to separate quasars from galaxies and stars using data from S-PLUS in the Stripe-82 region. In terms of quasar classification, we achieved 95.49% for precision and 95.26% for recall using a Random Forest algorithm. For photometric redshift estimation, we obtained a precision of 6% using k-Nearest Neighbour.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia Kapsiani ◽  
Brendan J. Howlin

AbstractAgeing is a major risk factor for many conditions including cancer, cardiovascular and neurodegenerative diseases. Pharmaceutical interventions that slow down ageing and delay the onset of age-related diseases are a growing research area. The aim of this study was to build a machine learning model based on the data of the DrugAge database to predict whether a chemical compound will extend the lifespan of Caenorhabditis elegans. Five predictive models were built using the random forest algorithm with molecular fingerprints and/or molecular descriptors as features. The best performing classifier, built using molecular descriptors, achieved an area under the curve score (AUC) of 0.815 for classifying the compounds in the test set. The features of the model were ranked using the Gini importance measure of the random forest algorithm. The top 30 features included descriptors related to atom and bond counts, topological and partial charge properties. The model was applied to predict the class of compounds in an external database, consisting of 1738 small-molecules. The chemical compounds of the screening database with a predictive probability of ≥ 0.80 for increasing the lifespan of Caenorhabditis elegans were broadly separated into (1) flavonoids, (2) fatty acids and conjugates, and (3) organooxygen compounds.


Sign in / Sign up

Export Citation Format

Share Document