scholarly journals Experimental and Finite Element Analysis of Asymmetric Rolling of 6061 Aluminum Alloy Using Two-Scale Elasto-Plastic Constitutive Relation

2017 ◽  
Vol 62 (4) ◽  
pp. 1991-1999 ◽  
Author(s):  
M. Wronski ◽  
K. Wierzbanowski ◽  
S. Wronski ◽  
B. Bacroix ◽  
P. Lipinski

AbstractThe goal of this work was theoretical and experimental study of micro- and macroscopic mechanical fields of 6061 aluminum alloy induced by the asymmetric rolling process. Two-scale constitutive law was used by implementing an elasto-plastic self-consistent scheme into the Finite Element code (ABAQUS/Explicit). The model was applied to study the asymmetric rolling. Such a deformation process induces heterogeneous mechanical fields that were reproduced by the model thanks to the crystallographic nature of constitutive law used. The studied material was processed, at room temperature, in one rolling pass to 36% reduction. The resulting material modifications were compared with predictions of the two-scale model. Namely, the calculated textures were compared with experimental ones determined by X-ray diffraction. Especially, detailed quantitative analysis of texture variation across the sample thickness was done. The influence of this texture variation on plastic anisotropy was studied. The advantages of asymmetric rolling process over symmetric one were identified. The main benefits are a nearly homogeneous crystallographic texture, reduced rolling normal forces and homogenization of plastic anisotropy through the sample thickness.

2014 ◽  
Vol 1061-1062 ◽  
pp. 515-521 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei

Cold rolled thin strip has received a great deal of attention through technological and theoretical progress in the rolling process, as well as from researchers who have focused on some essential parameters of strip such as its shape and profile. This paper describes the development of a 3-D finite element model of the shape of thin strip during cold rolling to simulate the cold rolling of WCS (work roll crossing and shifting) in asymmetric rolling. This finite element model considers the asymmetrical rolling parameters such as variations in the diameters of the rolls and the crossing angle as the work roll shifts on the strip during cold rolling. The shape and profile of the strip are discussed in the asymmetrical and symmetrical rolling conditions, while the total rolling force and distribution of stress are discussed in the case where the roll cross angle and axial shifting roll changes. The results can then be used to control the shape and profile of thin strip during rolling.


2017 ◽  
Vol 739 ◽  
pp. 231-234
Author(s):  
Tung Sheng Yang ◽  
Kui Chih Luo

The friction factor between 6061 aluminum alloy and die material (SKD61) are determined at different temperatures by using ring compression test which are carried out on a material testing machine. Mechanical properties and fiction factor are then applied to the finite element analysis of the wheel forging for different elevated temperature. Maximum forging load, effective stress and temperature distribution are determined of the wheel forging, using the finie element analysis. Finally, the wheel parts are formed by the forging machine under the conditions using finite element analysis.


2013 ◽  
Vol 700 ◽  
pp. 160-163
Author(s):  
Juan Wang ◽  
Si Yu Lai ◽  
Jin Zhou

The chromium-plating method is proposed to solve the wear and spalling problem of the cold roller in the rolling process. A three-dimensional asymmetric rolling model is constructed by using elastic-plastic finite tool, and the stress on the roller in different plating hardness, thickness and layers in cold rolling process is analyzed. By comparing the simulated results, the optimized state for chromium layer is scheduled.


2012 ◽  
Vol 445 ◽  
pp. 231-236
Author(s):  
Dyi Cheng Chen ◽  
Bao Yan Lai ◽  
Ci Syong You

The bicycle is not only a pollution-free method of transportation, but also has sport and recreation functions. Therefore, the bicycle attracted attention in now society gradually. This study uses the rigid-plastic finite element (FE) DEFORMTM software to investigate the plastic deformation behavior of a 7075 aluminum alloy workpiece as it is formed through a ring rolling die. This study systematically investigates the relative influences of ring rolling velocity, entering velocity, and workpiece temperature under various ring rolling forming conditions. The effective strain, effective stress, and workpiece damage distribution in the ring rolling process are also investigated. Results confirm the suitability of the proposed design process, which allows a ring rolling manufacturer to achieve a perfect design during finite element analysis.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2760
Author(s):  
Ruiye Li ◽  
Peng Cheng ◽  
Hai Lan ◽  
Weili Li ◽  
David Gerada ◽  
...  

Within large turboalternators, the excessive local temperatures and spatially distributed temperature differences can accelerate the deterioration of electrical insulation as well as lead to deformation of components, which may cause major machine malfunctions. In order to homogenise the stator axial temperature distribution whilst reducing the maximum stator temperature, this paper presents a novel non-uniform radial ventilation ducts design methodology. To reduce the huge computational costs resulting from the large-scale model, the stator is decomposed into several single ventilation duct subsystems (SVDSs) along the axial direction, with each SVDS connected in series with the medium of the air gap flow rate. The calculation of electromagnetic and thermal performances within SVDS are completed by finite element method (FEM) and computational fluid dynamics (CFD), respectively. To improve the optimization efficiency, the radial basis function neural network (RBFNN) model is employed to approximate the finite element analysis, while the novel isometric sampling method (ISM) is designed to trade off the cost and accuracy of the process. It is found that the proposed methodology can provide optimal design schemes of SVDS with uniform axial temperature distribution, and the needed computation cost is markedly reduced. Finally, results based on a 15 MW turboalternator show that the peak temperature can be reduced by 7.3 ∘C (6.4%). The proposed methodology can be applied for the design and optimisation of electromagnetic-thermal coupling of other electrical machines with long axial dimensions.


2016 ◽  
Vol 55 (1-2) ◽  
pp. 12-18 ◽  
Author(s):  
I. Yu. Prikhod’ko ◽  
M. A. Dedik ◽  
K. A. Gogaev ◽  
V. S. Voropaev ◽  
A. I. Itsenko

2021 ◽  
Vol 901 ◽  
pp. 176-181
Author(s):  
Tung Sheng Yang ◽  
Chieh Chang ◽  
Ting Fu Zhang

This paper used finite element analysis of metal forming to study the forging process and die design of aluminum alloy brake parts. According to the process parameters and die design, the brake parts were forged by experiment. First, the die design is based on the product size and considering parting line, draft angle, forging tolerance, shrinkage and scrap. Secondly, the finite element analysis of metal forming is used to simulate the forging process of aluminum alloy brake parts. Finally, the aluminum alloy brake levers with dimensional accuracy and surface hardness were forged.


Sign in / Sign up

Export Citation Format

Share Document