scholarly journals Austenite Grain Size Estimtion from Chord Lengths of Logarithmic-Normal Distribution

2017 ◽  
Vol 62 (4) ◽  
pp. 2015-2019
Author(s):  
H. Adrian ◽  
K. Wiencek

AbstractLinear section of grains in polyhedral material microstructure is a system of chords. The mean length of chords is the linear grain size of the microstructure. For the prior austenite grains of low alloy structural steels, the chord length is a random variable of gamma- or logarithmic-normal distribution. The statistical grain size estimation belongs to the quantitative metallographic problems. The so-called point estimation is a well known procedure. The interval estimation (grain size confidence interval) for the gamma distribution was given elsewhere, but for the logarithmic-normal distribution is the subject of the present contribution. The statistical analysis is analogous to the one for the gamma distribution.

2015 ◽  
Vol 60 (4) ◽  
pp. 2463-2470
Author(s):  
H. Adrian ◽  
K. Wiencek

Linear section of grains in polyhedral material microstructure is a system of chords on a test line. The mean chord length is the linear grain size of the material. In the prior austenite microstructure of low alloy structural steels, the chord length is a random variable which has the gamma distribution. The distribution parameters are closely related to the austenite linear grain size. Because the sequent chord lengths are statistically independent, the grain size interval estimation (confidence interval) may be performed by the chi-square distribution.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 324
Author(s):  
David San-Martin ◽  
Matthias Kuntz ◽  
Francisca G. Caballero ◽  
Carlos Garcia-Mateo

This investigation explores the influence of the austenitisation heat treatment and thus, of the prior austenite grain size (PAGS), on the kinetics of the bainitic transformation, using as A case study two high-carbon, high-silicon, bainitic steels isothermally transformed (TIso = 250, 300, 350 °C), after being austenised at different temperatures (γTγ = 925–1125 °C). A methodology, based on the three defining dilatometric parameters extracted from the derivative of the relative change in length, was proposed to analyse the transformation kinetics. These parameters are related to the time to start bainitic transformation, the time lapse for most of the transformation to take place and the transformation rate at the end of the transformation. The results show that increasing the PAGS up to 70 µm leads to an increase in the bainite nucleation rate, this effect being more pronounced for the lowest TIso. However, the overall transformation kinetics seems to be weakly affected by the applied heat treatment (γTγ and TIso). In one of the steels, PAGS > 70 µm (γTγ > 1050 °C), which weakly affects the progress of the transformation, except for TIso = 250 °C, for which the enhancement of the autocatalytic effect could be the reason behind an acceleration of the overall transformation.


Author(s):  
Reinaldo B. Arellano-Valle ◽  
Adelchi Azzalini

AbstractFor the family of multivariate probability distributions variously denoted as unified skew-normal, closed skew-normal and other names, a number of properties are already known, but many others are not, even some basic ones. The present contribution aims at filling some of the missing gaps. Specifically, the moments up to the fourth order are obtained, and from here the expressions of the Mardia’s measures of multivariate skewness and kurtosis. Other results concern the property of log-concavity of the distribution, closure with respect to conditioning on intervals, and a possible alternative parameterization.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


2021 ◽  
Vol 809 ◽  
pp. 140972
Author(s):  
Jin-Young Lee ◽  
Jin-Sung Hong ◽  
Seok-Hyeon Kang ◽  
Young-Kook Lee

2020 ◽  
Vol 837 ◽  
pp. 74-80
Author(s):  
Jun Yuan ◽  
Zhen Yu Han ◽  
Yong Deng ◽  
Da Wei Yang

In view of the special requirements of rails to ensure the safe and stable operation of Railways in China, the formation characteristics of austenite grains in high carbon rail are revealed through industrial exploration, the process of industrial rail heating and rolling is simulated, innovative experimental research methods such as different heating and heat treatment are carried out on the actual rails in the laboratory. Transfer characteristics of austenite grain size, microstructures and key properties of high carbon rail during the process are also revealed. The results show that the austenite grain size of industrial produced U75V rail is about 9.0 grade. When the holding temperature is increased from 800 C to 1300 C, the austenite grain size of high carbon rail steel decreases, the austenite grain are gradually coarsened, and the tensile strength increases slightly. The tensile strength is affected by the heating temperature. With the increase of heating temperature, the elongation and impact toughness of high carbon rail decrease. The heating temperature of high carbon rail combined with austenite grain size shows that the heating temperature has a great influence on austenite grain size, and has the most obvious influence on the toughness of high carbon rail.


Sign in / Sign up

Export Citation Format

Share Document