scholarly journals Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution

2017 ◽  
Vol 19 (3) ◽  
pp. 75-82 ◽  
Author(s):  
Ahad Ghaemi

Abstract In this research, thermodynamic and absorption rate of carbon dioxide in monoethanolamine (MEA) solution was investigated. A correlation based on both liquid and a gas phase variable for carbon dioxide absorption rate was presented using the π-Buckingham theorem. The correlation was constructed based on dimensionless numbers, including carbon dioxide loading, carbon dioxide partial pressure, film parameter and the ratio of liquid phase film thickness and gas phase film thickness. The film parameter is used to apply the effect of chemical reactions on absorption rate. A thermodynamic model based on the extended-UNIQUAC equations for the activity coefficients coupled with the Virial equation of state for representing the non-ideality of the vapor phase was used to predict the CO2 solubility in the CO2-MEA-H2O system. The average absolute error of the results for the correlation was 6.4%, which indicates the accuracy of the proposed correlation.

2021 ◽  
Vol 13 (7) ◽  
pp. 4011
Author(s):  
Alfredo Sánchez-Bautista ◽  
Ester M. Palmero ◽  
Alberto J. Moya ◽  
Diego Gómez-Díaz ◽  
M. Dolores La Rubia

There are a lot of research programs focusing on the development of new solvents for carbon dioxide capture. The most important priority should be reducing the energy consumption needed at the regeneration step, but minimizing solvent degradation and its corrosivity is also considered as a priority. In this research, the aqueous blends of 2-amino-2-methyl-1-propanol (AMP: 1 kmol·m−3) and 1-amino-2-propanol (MIPA: 0.1–0.5 kmol·m−3) are characterized in terms of density, viscosity, and surface tension. The carbon dioxide absorption rate and capacity, the regeneration capacity, and the corrosivity of these solvents are also evaluated.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 302
Author(s):  
Luke Chen ◽  
Chii-Dong Ho ◽  
Li-Yang Jen ◽  
Jun-Wei Lim ◽  
Yu-Han Chen

We investigated the insertion of eddy promoters into a parallel-plate gas–liquid polytetrafluoroethylene (PTFE) membrane contactor to effectively enhance carbon dioxide absorption through aqueous amine solutions (monoethanolamide—MEA). In this study, a theoretical model was established and experimental work was performed to predict and to compare carbon dioxide absorption efficiency under concurrent- and countercurrent-flow operations for various MEA feed flow rates, inlet CO2 concentrations, and channel design conditions. A Sherwood number’s correlated expression was formulated, incorporating experimental data to estimate the mass transfer coefficient of the CO2 absorption in MEA flowing through a PTFE membrane. Theoretical predictions were calculated and validated through experimental data for the augmented CO2 absorption efficiency by inserting carbon-fiber spacers as an eddy promoter to reduce the concentration polarization effect. The study determined that a higher MEA feed rate, a lower feed CO2 concentration, and wider carbon-fiber spacers resulted in a higher CO2 absorption rate for concurrent- and countercurrent-flow operations. A maximum of 80% CO2 absorption efficiency enhancement was found in the device by inserting carbon-fiber spacers, as compared to that in the empty channel device. The overall CO2 absorption rate was higher for countercurrent operation than that for concurrent operation. We evaluated the effectiveness of power utilization in augmenting the CO2 absorption rate by inserting carbon-fiber spacers in the MEA feed channel and concluded that the higher the flow rate, the lower the power utilization’s effectiveness. Therefore, to increase the CO2 absorption flux, widening carbon-fiber spacers was determined to be more effective than increasing the MEA feed flow rate.


2016 ◽  
Vol 37 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Grzegorz Bińczak ◽  
Władysław Moniuk ◽  
Zofia Mordecka ◽  
Cezary Możeński

Abstract In the paper the results of measurements of CO2 absorption rate in aqueous potassium carbonate solutions containing cyclohexylamine, diethanolamine, 2-methylaminoethanol and triethylenetetramine as activators have been presented. Enhnancement mass transfer factors as well as reaction rate constants have been determined. Results show that among the tested activators triethylenetetramine and 2-methyl-aminoethanol may be used (instead of diethanolamine) as new promotors in a modified BENFLIELD process.


2012 ◽  
Vol 33 (4) ◽  
pp. 547-561 ◽  
Author(s):  
Władysław Moniuk ◽  
Ryszard Pohorecki ◽  
Piotr Machniewski

Measurements of the absorption rate of carbon dioxide into aqueous solutions of N-methyldiethanoloamine (MDEA) and 2-ethylaminoethanol (EAE) have been carried out. On this basis a mathematical model of the performance of an absorption column operated with aqueous solution of a blend of the above amines at elevated temperatures and pressures have been proposed. The results of simulations obtained by means of this model are described. The work is a part of a wider program, aimed at the development of a new process.


Sign in / Sign up

Export Citation Format

Share Document