Altered response dynamics and increased population correlation to tonal stimuli embedded in noise in aging auditory cortex

2021 ◽  
pp. JN-RM-0839-21
Author(s):  
Kelson Shilling-Scrivo ◽  
Jonah Mittelstadt ◽  
Patrick O. Kanold
1975 ◽  
Vol 38 (2) ◽  
pp. 231-249 ◽  
Author(s):  
M. M. Merzenich ◽  
P. L. Knight ◽  
G. L. Roth

The representation of sound frequency (and of the cochlear partition) within primary auditory cortex has been investigated with use of microelectrode-mapping techniques in a series of 25 anesthetized cats. Among the results were the following: 1) Within vertical penetrations into AI, best frequency and remarkably constant for successively studied neurons across the active middle and deep cortical layers. 2) There is an orderly representation of frequency (and of represented cochlear place) within AI. Frequency is rerepresented across the mediolateral dimension of the field. On an axis perpendicular to this plane of rerepresentation, best-frequency (represented cochlear place) changes as a simple function of cortical location. 3) Any given frequency band (or sector of the cochlear partition) is represented across a belt of cortex of nearly constant width that runs on a nearly straight axis across AI. 4) There is a disproportionately large cortical surface representation of the highest-frequency octaves (basal cochlea) within AI. 5) The primary and secondary field locations were somewhat variable, when referenced to cortical surface landmarks. 6) Data from long penetrations passing down the rostral bank of the posterior ectosylvian sulcus were consistent with the existence of a vertical unit of organization in AI, akin to cortical columns described in primary visual and somatosensory cortex. 7) Responses to tonal stimuli were encountered in fields dorsocaudal, caudal, ventral, and rostral to AI. There is an orderly representation of the cochlea within the field rostal to AI, with a reversal in best frequencies across its border with AI. 8) Physiological definitions of AI boundaries are consistent with their cytoarchitectonic definition. Some of the implications of these findings are discussed.


2003 ◽  
Vol 90 (4) ◽  
pp. 2660-2675 ◽  
Author(s):  
Jennifer F. Linden ◽  
Robert C. Liu ◽  
Maneesh Sahani ◽  
Christoph E. Schreiner ◽  
Michael M. Merzenich

The mouse is a promising model system for auditory cortex research because of the powerful genetic tools available for manipulating its neural circuitry. Previous studies have identified two tonotopic auditory areas in the mouse—primary auditory cortex (AI) and anterior auditory field (AAF)— but auditory receptive fields in these areas have not yet been described. To establish a foundation for investigating auditory cortical circuitry and plasticity in the mouse, we characterized receptive-field structure in AI and AAF of anesthetized mice using spectrally complex and temporally dynamic stimuli as well as simple tonal stimuli. Spectrotemporal receptive fields (STRFs) were derived from extracellularly recorded responses to complex stimuli, and frequency-intensity tuning curves were constructed from responses to simple tonal stimuli. Both analyses revealed temporal differences between AI and AAF responses: peak latencies and receptive-field durations for STRFs and first-spike latencies for responses to tone bursts were significantly longer in AI than in AAF. Spectral properties of AI and AAF receptive fields were more similar, although STRF bandwidths were slightly broader in AI than in AAF. Finally, in both AI and AAF, a substantial minority of STRFs were spectrotemporally inseparable. The spectrotemporal interaction typically appeared in the form of clearly disjoint excitatory and inhibitory subfields or an obvious spectrotemporal slant in the STRF. These data provide the first detailed description of auditory receptive fields in the mouse and suggest that although neurons in areas AI and AAF share many response characteristics, area AAF may be specialized for faster temporal processing.


2014 ◽  
Vol 111 (11) ◽  
pp. 2244-2263 ◽  
Author(s):  
Brian J. Malone ◽  
Brian H. Scott ◽  
Malcolm N. Semple

Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing.


2004 ◽  
Vol 91 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Jiping Zhang ◽  
Kyle T. Nakamoto ◽  
Leonard M. Kitzes

The binaural interactions of neurons were studied in the primary auditory cortex (AI) of barbiturate-anesthetized cats with a matrix of binaural tonal stimuli varying in both interaural level differences (ILD) and average binaural level (ABL). The purpose of this study was to determine: 1) the distribution of preferred binaural combinations (PBCs) of a large population of neurons and its relationships with binaural interactions and binaural monotonicity; 2) whether monaural responses are predictive of binaural responses; and 3) whether there is a restricted set of representative binaural stimulus configurations that could effectively classify the binaural interactions. Binaural interactions were often diverse in the matrix and dependent on both ABL and ILD. Compared with previous studies, a higher proportion of mixed binaural interaction type and a lower proportion of EO/I type were found. No monaural neurons were found. Binaural responses often differed from monaural responses in the number of spikes and/or the form of the response functions. The PBCs of the majority of EO and PB neurons were in the contralateral field and midline, respectively. However, the PBCs of EE units were evenly distributed across the contralateral and ipsilateral fields. The majority of the nonmonotonic neurons responded most strongly to lower ABLs, whereas the majority of monotonic neurons responded most strongly to higher ABLs. This study demonstrated that in AI a restricted set of binaural stimulus configurations is not sufficient to reveal the binaural responses properties. Also, monaural responses are not predictive of binaural responses.


1995 ◽  
Vol 73 (4) ◽  
pp. 1513-1523 ◽  
Author(s):  
N. Kowalski ◽  
H. Versnel ◽  
S. A. Shamma

1. Characteristics of an anterior auditory field (AAF) in the ferret auditory cortex are described in terms of its electrophysiological responses to tonal stimuli and compared with those of primary auditory cortex (AI). Ferrets were barbiturate-anesthetized and tungsten microelectrodes were used to record single-unit responses from both AI and AAF fields. Units in both areas were presented with the same stimulus paradigms and their responses analyzed in the same manner so that a direct comparison of responses was possible. 2. The AAF is located dorsal and rostral to AI on the ectosylvian gyrus and extends into the suprasylvian sulcus rostral to AI. The tonotopicity is organized with high frequencies at the top of the sulcus bordering the high-frequency area of AI, then reversing with lower BFs extending down into the sulcus. AAF contained single units that responded to a frequency range of 0.3-30 kHz. 3. Stimuli consisted of single-tone bursts, two-tone bursts and frequency-modulated (FM) stimuli swept in both directions at various rates. Best frequency (BF) range, rate-level functions at BF, FM directional sensitivity, and variation in asymmetries of response areas were all comparable characteristics between AAF and AI. Responses in both areas were primarily phasic. 4. The characteristics that were different between the two cortical areas were: latency to tone onset, excitatory bandwidth 20 dB above threshold (BW20), and preferred FM rate as parameterized with the centroid (a weighted average of spike counts). The mean latency of AAF units was shorter than in AI (AAF: 16.8 ms, AI: 19.4 ms). BW20 measurements in AAF were typically twice as large as those found in AI (AAF: 2.5 octaves, AI 1.3 octaves). The AI centroid population had a significantly larger standard deviation than the AAF centroid population. 5. We examined the relationship between centroid and BW20 to see whether wider bandwidths were a factor in a unit's ability to detect fast sweeps. There was significant (P < 0.05) linear correlation in AAF but not in AI. In both fields the variance of the centroid population decreased with increasing BW20. BW20 decreased as BF increased for units in both auditory fields.


1989 ◽  
Vol 480 (1-2) ◽  
pp. 210-218 ◽  
Author(s):  
Alan H. Teich ◽  
Philip M. McCabe ◽  
Christopher C. Gentile ◽  
Laura S. Schneiderman ◽  
Ray W. Winters ◽  
...  

1977 ◽  
Vol 86 (4) ◽  
pp. 500-506 ◽  
Author(s):  
William D. Neff

After bilateral ablation of the auditory areas of the cerebral cortex, experimental animals have a severe deficit in ability to discriminate between temporal patterns of tonal stimuli and to localize sound in space. These two kinds of discrimination are basic for communication and for attack or avoidance of prey and predator. Recognition of which ear is stimulated may also depend upon excitation of auditory cortex contralateral to the given ear. Binaural discriminations are dependent upon interaction of nerve impulses from the two ears at a low level in the auditory nervous system. Similar hearing losses have been reported for human patients.


Sign in / Sign up

Export Citation Format

Share Document