Understanding Cellular Respiration in Terms of Matter & Energy within Ecosystems

2014 ◽  
Vol 76 (6) ◽  
pp. 408-414 ◽  
Author(s):  
Joshua S. White ◽  
April C. Maskiewicz

Using a design-based research approach, we developed a data-rich problem (DRP) set to improve student understanding of cellular respiration at the ecosystem level. The problem tasks engage students in data analysis to develop biological explanations. Several of the tasks and their implementation are described. Quantitative results suggest that students from the experimental class who participated in the DRP showed significant gains on cellular respiration posttest items, and students from the control class who participated in a non-DRP task showed no significant gains. Qualitative results from interviews and written responses showed that students from the experimental class progressed to deeper “levels of achievement” in cellular respiration. The data-rich tasks promote student understanding of cellular respiration, matter transformation, decomposition, and energy transformation – all goals recommended by the Next Generation Science Standards.

Author(s):  
Susan Yoon ◽  
Sao-Ee Goh ◽  
Zhitong Yang

Recent research on what students know about complex systems shows that they typically have challenges in understanding particular system ideas such as nonlinearity, complex causality, and decentralized control. Yet this research has yet to adopt a systematic approach to learning about complex systems in an ordered way in line with the Next Generation Science Standards’ call for learning pathways that guide teaching and learning along a developmental continuum. In this paper, we propose that learning progressions research can provide a conceptual framework for identifying a learning pathway to complex systems understanding competence. As a first step in developing a progression, we articulate a sequence of complex systems ideas, from the least to most difficult, by analyzing students’ written responses using an item response theory model. Results show that the easiest ideas to comprehend are those that relate to levels or scales within systems and the interconnected nature of systems. The most difficult ideas to grasp are those related to the decentralized organization of the system and the unpredictable or nondeterministic nature of effects. We discuss implications for this research in terms of developing curricular content that can guide learning experiences in grades 8–12 science education.


Science Scope ◽  
2013 ◽  
Vol 037 (01) ◽  
Author(s):  
Chris Dobson ◽  
Stephanie Oostdyk ◽  
Patricia Radtke

Author(s):  
Sharon P. Schleigh ◽  
Stephanie J. Slater ◽  
Timothy F. Slater ◽  
Debra J. Stork

Há um grande interesse em restringir a ampla gama e vasto domínio dos possíveis temas que poderiam ser ensinados sobre astronomia em uma estrutura gerenciável. Embora não haja nenhum currículo nacional obrigatório nos Estados Unidos, uma análise dos três esforços nacionais recentes para criar uma sequência apropriada de conceitos de astronomia por idade para serem ensinados nas escolas primárias e secundárias revela uma considerável falta de consenso a respeito de quais conceitos são mais apropriados para cada idade e quais tópicos devem ser cobertos. O esquema de padronização mais recente para a educação científica dos EUA, o Next Generation Science Standards (Padrões em Ciência: Nova Geração), sugere que a maioria dos conceitos de astronomia devem ser ensinados apenas nos últimos anos de educação do aluno; e no entanto  foi recebido com críticas consideráveis. Uma comparação dos esquemas de aprendizagem da astronomia nos Estados Unidos e uma breve discussão das críticas levantadas podem proporcionar aos educadores de astronomia internacionais dados de comparação na formulação de recomendações em suas próprias regiões.


Sign in / Sign up

Export Citation Format

Share Document