scholarly journals Accelerating the learning process of a neural network by predicting the weight coefficient

2021 ◽  
Vol 4 (4) ◽  
pp. 295-302
Author(s):  
Viktor O. Speranskyy ◽  
Mihail O. Domanciuc

The purpose of this study is to analyze and implement the acceleration of the neural network learning process by predicting the weight coefficients. The relevance of accelerating the learning of neural networks is touched upon, as well as the possibility of using prediction models in a wide range of tasks where it is necessary to build fast classifiers. When data is received from the array of sensors of a chemical unit in real time, it is necessary to be able to predict changes and change the operating parameters. After assessment, this should be done as quickly as possible in order to promptly change the current structure and state of the resulting substances.. Work on speeding up classifiers usually focuses on speeding up the applied classifier. The calculation of the predicted values of the weight coefficients is carried out using the calculation of the value using the known prediction models. The possibility of the combined use of prediction models and optimization models was tested to accelerate the learning process of a neural network. The scientific novelty of the study lies in the effectiveness analysis of prediction models use in training neural networks. For the experimental evaluation of the effectiveness of prediction models use, the classification problem was chosen. To solve the experimental problem, the type of neural network “multilayer perceptron” was chosen. The experiment is divided into several stages: initial training of the neural network without a model, and then using prediction models; initial training of a neural network without an optimization method, and then using optimization methods; initial training of the neural network using combinations of prediction models and optimization methods; measuring the relative error of using prediction models, optimization methods and combined use. Models such as “Seasonal Linear Regression”, “Simple Moving Average”, and “Jump” were used in the experiment. The “Jump” model was proposed and developed based on the results of observing the dependence of changes in the values of the weighting coefficient on the epoch. Methods such as “Adagrad”, “Adadelta”, “Adam” were chosen for training neural and subsequent verification of the combined use of prediction models with optimization methods. As a result of the study, the effectiveness of the use of prediction models in predicting the weight coefficients of a neural network has been revealed. The idea is proposed and models are used that can significantly reduce the training time of a neural network. The idea of using prediction models is that the model of the change in the weight coefficient from the epoch is a time series, which in turn tends to a certain value. As a result of the study, it was found that it is possible to combine prediction models and optimization models. Also, prediction models do not interfere with optimization models, since they do not affect the formula of the training itself, as a result of which it is possible to achieve rapid training of the neural network. In the practical part of the work, two known prediction models and the proposed developed model were used. As a result of the experiment, operating conditions were determined using prediction models.

2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


2002 ◽  
pp. 154-166 ◽  
Author(s):  
David West ◽  
Cornelius Muchineuta

Some of the concerns that plague developers of neural network decision support systems include: (a) How do I understand the underlying structure of the problem domain; (b) How can I discover unknown imperfections in the data which might detract from the generalization accuracy of the neural network model; and (c) What variables should I include to obtain the best generalization properties in the neural network model? In this paper we explore the combined use of unsupervised and supervised neural networks to address these concerns. We develop and test a credit-scoring application using a self-organizing map and a multilayered feedforward neural network. The final product is a neural network decision support system that facilitates subprime lending and is flexible and adaptive to the needs of e-commerce applications.


2012 ◽  
Vol 500 ◽  
pp. 243-249
Author(s):  
Da Cheng Wang ◽  
Luo Rui Sen ◽  
Ji Hua Wang ◽  
Cun Jun Li ◽  
Dong Yan Zhang ◽  
...  

Canopy leaf Chlorophyll Density is a key index for evaluating crop potential photosynthetic efficiency and nutritional stress. Leaf Chlorophyll Density estimate using canopy hyperspectral vegetation indices provides a rapid and non-destructive method to evaluate yield predictions. A systematic comparison of two approaches to estimate Chlorophyll Density using 6 spectral vegetation indices (VIs) was presented in this study. In this study, the traditional statistical method based on power regression analyses was compared to the emerging computationally powerful techniques based on artificial neural network (ANN). The regression models of TCARI 、SAVI 、MSAVI and RDVIgreen were found to be more suitable for predicting Chlorophyll Density when only traditional statistical method was used especially TCARI and RDVI. ANN method was more appropriate to develop prediction models. The comparisons between these two methods were based on analysis of the statistic parameters. Results obtained using Root Mean Square Error (RMSE) for ANNs were significantly lower than the traditional method. From this analysis it is concluded that the neural network is more robust to train and estimate crop Chlorophyll Density from remote sensing data.


Volume 2 ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Alireza Kasaaizadeh

This paper presents a method for estimation of road profile for automotive research applications with more accuracy and higher speed. Dynamic response of a car equipped with position and velocity sensors and driving on a sample road is used as basic data. A feed-forward neural network, trained with outputs from a car model in ADAMS, is used as the car inverse model. The neural network is capable of estimating the road roughness from the car response during test drives. The ADAMS model is corrected and validated using a series of dynamic experiments on the car, performed on a hydro-pulse test rig. The only problem in this approach, like other identification and optimization methods, is the large volume of generated data in time domain, acquired from car response during road test. This problem is solved using wavelet methods to code the acquired data. Unlike all frequency methods that eliminate a large portion of the data details during processing, the wavelet coding method restores most of the details, while the volume of the stored data is kept to a minimum. The results show that this method can estimate the road profile accurately and with great savings in processing time and effort.


2019 ◽  
Vol 821 ◽  
pp. 500-505
Author(s):  
Mohammad Fuad Aljarrah ◽  
Mohammad Ali Khasawneh ◽  
Aslam Ali Al-Omari ◽  
Mohammad Emad Alshorman

The major objective of this study is to investigate the possibility of using Artificial Neural Networks in creating prediction models capable of estimating Bending Beam Rheometer outputs; namely creep stiffness, and m-value based on test temperature, modifier content; in our case waste vegetable oil, and testing time interval. A feedforward backpropagation neural network with Bayesian Regulation training algorithm and an SSE performance function was implemented. It was found that the neural network model shows high predictive powers with training and testing performance of 99.8% and 99.2% respectively. Plots between laboratory obtained values and neural network predicted outputs were also considered, and a strong correlation between the two methods was concluded. Therefore, it was reasonable to state that using neural networks to build prediction models in order to find BBR test values is justified.


2013 ◽  
Vol 332 ◽  
pp. 443-448 ◽  
Author(s):  
Crina Radu ◽  
Ion Cristea ◽  
Eugen Herghelegiu ◽  
Stefan Tabacu

The aim of this paper is to enrich the knowledge related to the single point incremental forming (SPIF) process by evaluating the efficiency of two optimization methods - the response surface method and the neural network method - to improve the accuracy of manufactured parts by prescribing a proper combination of the process parameters. The analysis is performed for a double frustum of pyramid made by stainless steel. It was found a good ability of prediction of both methods, demonstrating their suitability for physical implementation in solving problems associated to the SPIF process.


2003 ◽  
Vol 3 ◽  
pp. 455-476 ◽  
Author(s):  
Wun Wong ◽  
Peter J. Fos ◽  
Frederick E. Petry

The assessment of medical outcomes is important in the effort to contain costs, streamline patient management, and codify medical practices. As such, it is necessary to develop predictive models that will make accurate predictions of these outcomes. The neural network methodology has often been shown to perform as well, if not better, than the logistic regression methodology in terms of sample predictive performance. However, the logistic regression method is capable of providing an explanation regarding the relationship(s) between variables. This explanation is often crucial to understanding the clinical underpinnings of the disease process. Given the respective strengths of the methodologies in question, the combined use of a statistical (i.e., logistic regression) and machine learning (i.e., neural network) technology in the classification of medical outcomes is warranted under appropriate conditions. The study discusses these conditions and describes an approach for combining the strengths of the models.


Author(s):  
Kirupa Ganapathy

Defense at boundary is nowadays well equipped with perimeter protection, cameras, fence sensors, radars etc. However, in battlefield there is more feasibility of entering of a non-native human and unknowing stamping of the explosives placed in the various paths by the native soldiers. There exists no alert system in the battlefield for the soldiers to identify the intruder or the explosives in the field. Therefore, there is a need for an automated intelligent intrusion detection system for battlefield monitoring. This chapter proposes an intelligent radial basis function neural network (RBFNN) technique for intrusion detection and explosive identification. The proposed intelligent RBFNN implements some intellectual components in the algorithm to make the neural network think before learning the training samples. Involvement of intellectual components makes the learning process simple, effective and efficient. The proposed technique helps to reduce false alarm and encourages timely detection thereby providing extensive support for the native soldiers and save the life of the mankind.


2020 ◽  
Vol 2020 (4) ◽  
pp. 71-78
Author(s):  
Sherzod Nematov ◽  
◽  
Y Talatov

To automatically determine the state of the cardiovascular system based on the recorded ECG signals, an artificial neural network is trained to classify signals into various possible states. At the same time, the parameters of heart rate variability (HRV) were extracted from the ECG signals and used as input functions for the neural network. HRV is the fluctuation in the time intervals between adjacent heartbeats. For this, the architecture of a neural network based on a multilayer perceptron and a method for obtaining the necessary parameters in the learning process have been developed, and the classification efficiency has been checked and evaluated


Sign in / Sign up

Export Citation Format

Share Document