PERFUSION OF OVARIES IN VITRO AND IN VIVO

1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S285-S309 ◽  
Author(s):  
Kurt Ahrén ◽  
Per Olof Janson ◽  
Gunnar Selstam

ABSTRACT This paper discusses in vivo and in vitro ovarian perfusion systems described so far in the literature. The interest is not focussed primarily on the results of these studies but rather on the advantages and disadvantages of the techniques and methods used. Another part of the paper summarizes the points which are most important, in our opinion, to take into consideration when developing an in vitro perfusion technique of the ovary. The last part of the paper gives a description of and some preliminary results from an in vitro perfusion system of the rabbit ovary which is under development in this laboratory.

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 914
Author(s):  
Melanie V. Brady ◽  
Flora M. Vaccarino

The complexities of human neurodevelopment have historically been challenging to decipher but continue to be of great interest in the contexts of healthy neurobiology and disease. The classic animal models and monolayer in vitro systems have limited the types of questions scientists can strive to answer in addition to the technical ability to answer them. However, the tridimensional human stem cell-derived organoid system provides the unique opportunity to model human development and mimic the diverse cellular composition of human organs. This strategy is adaptable and malleable, and these neural organoids possess the morphogenic sensitivity to be patterned in various ways to generate the different regions of the human brain. Furthermore, recapitulating human development provides a platform for disease modeling. One master regulator of human neurodevelopment in many regions of the human brain is sonic hedgehog (SHH), whose expression gradient and pathway activation are responsible for conferring ventral identity and shaping cellular phenotypes throughout the neural axis. This review first discusses the benefits, challenges, and limitations of using organoids for studying human neurodevelopment and disease, comparing advantages and disadvantages with other in vivo and in vitro model systems. Next, we explore the range of control that SHH exhibits on human neurodevelopment, and the application of SHH to various stem cell methodologies, including organoids, to expand our understanding of human development and disease. We outline how this strategy will eventually bring us much closer to uncovering the intricacies of human neurodevelopment and biology.


2021 ◽  
Vol 10 (3) ◽  
pp. 109-120
Author(s):  
A. I. Mosiagina ◽  
A. V. Morgun ◽  
A. B. Salmina

There is growing research focusing on endothelial cells as separate units of the blood-brain barrier (BBB), and on the complex relationships between different types of cells within a neurovascular unit. To conduct this type of studies, researches use vastly different in vitro BBB models. The main objective of such models is to study the BBB permeability for different molecules, and to advance the current level of understanding the mechanisms of disease and to develop methods of targeted therapy for the central nervous system. The analysis of the existing Abstract in vitro BBB models and their advantages/disadvantages was conducted using the clinical trial data obtained in Russian/foreign countries. In this review, the authors highlight the most relevant assessment parameters and propose a unified classification of in vitro BBB models. According to the performed analysis, there is a tendency to move from 2D BBB models based on semipermeable inserts to 3D BBB spheroid and microfluidic organ-on-chip models. Moreover, the use of human induced pluripotent stem cells instead of animal primary cells will make it possible to reliably scale the results obtained in vitro to conditions in vivo.


1995 ◽  
Vol 9 (3) ◽  
pp. 255-269 ◽  
Author(s):  
G.H. Bowden

Models of the caries process have made significant contributions toward defining the roles of bacteria in caries. Microbiologists use a variety of in vitro systems to model aspects of the caries process. Also, in situ models in humans provide information on the microbiology of caries in vivo. These models do not involve the entire process leading to natural caries; consequently, the results from such studies are used to deduce the roles of bacteria in natural caries. Therefore, they can be described as Inferential Caries Models. In contrast, animal models and some clinical trials in humans involve natural caries and can be described as Complete Caries Models. Furthermore, these models are used in two distinct ways. They can be used as Exploratory Models to explore different aspects of the caries process, or as Test Models to determine the effects of anticaries agents. This dichotomy in approach to the use of caries models results in modification of the models to suit a particular role. For example, if we consider Exploratory Models, the in situ appliance in humans is superior to others for analyzing the microbiology of plaque development and demineralization in vivo. The chemostat and biofilm models are excellent for exploring factors influencing bacterial interactions. Both models can also be used as Test Models. The in situ model has been used to test the effects of fluoride on the microflora and demineralization, while the chemostat and biofilm models allow for the testing of antibacterial agents. Each model has its advantages and disadvantages and role in analysis of the caries process. Selection of the model depends on the scientific question posed and the limitations imposed by the conditions available for the study.


2015 ◽  
Vol 27 (1) ◽  
pp. 185
Author(s):  
S. Maffei ◽  
G. Galeati ◽  
G. Pennarossa ◽  
T. A. L. Brevini ◽  
G. Gandolfi

The different structures of a mammalian ovary require complex 3-dimensional interactions to function properly. It is difficult to access the ovary in vivo and to study its physiology in vitro, it is necessary to dissect its different parts and culture them individually. Although informative, this approach prevents the understanding of the role played by their interactions. Perfusion systems are available for ovaries of laboratory animals while organs of larger species have been maintained in culture only for a few hours. This has prompted us to develop a system that can preserve the function of a whole sheep ovary for a few days ex vivo so that it is available for analysis in controlled conditions. Twenty-four sheep ovaries were collected at the local abattoir; 18 were assigned randomly to 3 experimental groups (media A, B, and C) and 6 were immediately fixed in 10% formaldehyde and used as fresh controls. Whole ovaries were cultured for up to 4 days using a semi-open perfusion system. Organs were perfused through the ovarian artery, at a flow rate of 1.5 mL min–1 with basal medium (M199, 25 mM HEPES, 2 mM l-glutamine and 100 µg mL–1 antibiotic-antimycotic solution) supplemented with 0.4% fatty acid free BSA (medium A); or 0.4% BSA heat shock fraction (medium B); or 10% FBS, 50 ng mL–1 IGF-1, and 50 mg bovine insulin (medium C). Ovaries were stimulated with FSH (Folltropin®-V, Bioniche Animal Health Inc., Belleville, Ontario, Canada) changing medium in a pulsatile manner (1 mg mL–1 for 2 h; 0.5 mg mL–1 for 2 h; 0 mg mL–1 for 20 h), with the same cycle repeated each day of culture. At every change, aliquots were collected for oestradiol (E2) and progesterone (P4) quantification. After culture, ovaries were examined for follicular morphology, cell proliferation, and apoptotic rate. Statistical analysis was performed using one-way ANOVA (SPSS 20, IBM, Armonk, NY, USA). In media A and B, all morphological parameters showed a small but significant decrease compared to fresh control, only after 3 days of culture. The different BSA in medium B did not affect follicle morphology but significantly increased cell proliferation (medium A, 28.59 ± 3.26%; medium B, 32.04 ± 2.67%) and decreased apoptosis (medium A, 32.51 ± 5.92%; medium B, 24.55 ± 2.55%). In both media, steroid concentration increased after FSH pulses (E2 range 1.95–10.50 pg mL–1; P4 range 0.34–3.08 ng mL–1), reaching levels similar to those measurable in peripheral plasma. The presence of FBS, IGF-1, and insulin in medium C allowed extension of the culture period to 4 days with a percentage of intact follicles comparable to that observed after 3 days in media A and B. Moreover, proliferation rates were comparable to fresh controls. Steroid pattern changed with P4 values dropping close to zero (range 0.03–1.18 ng mL–1) and E2 level (range 23.59–94.98 pg mL–1) increasing 10-fold, achieving a concentration similar to that measured in the ovarian vein around oestrous. Our data indicate that it is possible to support viability of large animal whole ovaries for up to 4 days, providing a physiologically relevant model for studying ovarian functions in vitro. Research was supported by AIRC IG 10376 and by the Carraresi Foundation.


1977 ◽  
Vol 232 (2) ◽  
pp. E229
Author(s):  
E L Krawitt ◽  
A S Kunin ◽  
H W Sampson ◽  
B F Bacon

To examine the effect of hypophysectomy on intestinal calcium absorption, studies were performed on immature rats 7, 14, and 21 days after hypophysectomy. Duodenal calcium transport was measured in vitro utilizing everted gut sacs and in vivo by a luminal perfusion technique. Hypophysectomy produced no differences in the ability of everted gut sacs to transport calcium. Similarly, when in vivo transport data were expressed on the basis of intestinal length, no significant differences were noted. However, when transport data were expressed on the basis of mucosal weight, increases in absorption and lumen-to-plasma fluxes were apparent in hypophysectomized animals. No differences were seen in plasma-to-lumen fluxes. The results indicate that when the transport data are corrected for mass of intestinal mucosa, the duodenum from hypophysectomized animals absorbs calcium more avidly due to an increase in lumen-to-plasma flux.


2021 ◽  
Vol 91 (1) ◽  
pp. 86-98
Author(s):  
S. S. Malchenkova ◽  
◽  
N. S. Golyak ◽  
V. M. Tsarenkov ◽  
◽  
...  

The article presents the main types of laboratory animals that are used to study the transdermal permeability of chemical compounds. We described the structural features of epidermis, derma and skin appendages in humans and laboratory animals (small rodents, pigs, monkeys). We also emphasized advantages and disadvantages of various laboratory animals as objects for in vivo transdermal modeling. A method of extrapolation called “The parallelogram method” or «Triple Pack» has been singled out to predict the permeability of the human skin in the presence of experimental data on the permeability of the skin of animals in vivo and humans in vitro. The article describes the experimental design (including preparation of animals, premises and the substance applied) to determine transdermal permeability of substances in vivo under the guidelines of the World Health Organization and the Organization for Economic Cooperation and Development. Tissue microdialysis in volunteers has been identified as the most perfect and safest ways to promptly detect substances in the derma and tape stripping has been made in the cells of the stratum corneum.


1997 ◽  
Vol 18 (1) ◽  
pp. 1-6 ◽  
Author(s):  
G. Oluyemisi Latunde-Dada ◽  
Suresh Chandra Babu ◽  
Evance Chapasuka

The average diet in most developing countries, including Nigeria, is predominantly plant based. Cereals, legumes, tubers, and vegetables are the main food types. Although most of these food items have considerable iron, its low bioavailability is one of the factors accounting for the high incidence of iron-deficiency anaemia. The traditional processing procedures, fermentation and germination, improved the chemical and bioavailable iron in the foods studied. Techniques of measuring iron availability in vitro and in vivo were applied to a variety of foods. The advantages and disadvantages of the methods employed are discussed.


Sign in / Sign up

Export Citation Format

Share Document