Dimensional stability and mechanical properties of bio-based composites produced from hydro-thermal treated wheat straw

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7901-7915
Author(s):  
Ümit Büyüksarı ◽  
Ömer Özyürek

Bio-composites were produced from untreated (UT) and hydro-thermally treated (HTT) wheat straw (WS) particles and wood, and their dimensional stability and mechanical properties were investigated. The HTT treatment consisted of subjecting the WS particles to a steam explosion process for 8 min at 180 °C. The HTT and UT WS particles were mixed with the wood particles at 10, 20, 30, and 40% ratios. The physical properties, including density, water absorption (WA), and thickness swelling (TS), were determined for the bio-based composites. The mechanical properties evaluated included the modulus of rupture, modulus of elasticity, and internal bond strength. Statistical analyses showed that the hydro-thermal treatment and the WS ratio had significant effects on the dimensional stability and mechanical properties of the bio-composites. The WA of the composites after 2-h and 24-h rose significantly when the HTT WS particle ratio was increased from 10 to 40%. The 2-h and 24-h WA values of HTT-10 were 6.3% and 5.3% lower than those of UT-10, respectively. Improvements in the 2-h TS value were achieved by the HTT WS particles at the 10% ratio, and in the 24-h TS value at the 10 and 40% ratios. The mechanical properties of the composites were higher in the HTT group, but decreased in both the UT and HTT groups as the WS ratio increased.

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9596-9610
Author(s):  
Yali Shao ◽  
Lili Li ◽  
Zhangjing Chen ◽  
Sunguo Wang ◽  
Ximing Wang

Poplar (Populus) wood was subjected in this work to thermo-hydro-mechanical treatment. The influence of the treatment parameters on the physical and mechanical properties were investigated. The wood samples were densified under three compression ratios (0%, 30%, and 50%), and thermally treated at three temperatures (180 °C, 200 °C, and 220 °C), at three thermal treatment durations (3 h, 4 h, and 5 h). The density, modulus of elasticity, modulus of rupture, radial hardness, and thickness swelling were measured. The results showed that the densities of the samples increased by 36.6% to 49.7%. As the compression rate increased, the temperature, duration, modulus of elasticity, modulus of rupture, and hardness increased. However, the dimensions of the densified samples were less stable. Compared to the densified samples, the maximum thickness swelling could be reduced by 74% (from 29.7% to 7.8%) when subjected to a thermal treatment at 220 °C for 3 h.


2010 ◽  
Vol 143-144 ◽  
pp. 1429-1433 ◽  
Author(s):  
Shun Xin Fu ◽  
Guang Ping Han ◽  
Wan Li Cheng ◽  
James Deng

Particleboards bonded with urea formaldehyde (UF) and a combination of UF and methylene diphenyl diisocyanate (MDI) resins were manufactured using wheat straws modified through different steam explosion treatments. The effect of steam explosion treatment, resin system, and mixing ratios of wood and straw materials on the panel properties was investigated. Generally, with steam explosion treatment of straw fibers, panel properties in bending and internal bond (IB) strength increased, thickness swelling (TS) and water absorption (WA) decreased. The bending properties for the panels made from the straws pretreated with 12 h water-soaking were significantly improved at the UF/MDI content level of 5%/1%. The IB strength dramatically increased, while TS and WA decreased with the use of dual resins. With increased weight ratio of wheat straw to wood particles, the bending properties, IB strength, TS and WA deteriorated. Pure wheat straw boards had the lowest properties. Wood particles in substitution for part of straw materials helped improve the panel properties. The results demonstrated that steam explosion modification and/or its combination with UF/MDI dual resin system can be a feasible approach to improve the bonding strength for wheat straw based particleboards.


Nativa ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 177
Author(s):  
Talita Baldin ◽  
Maiara Talgatti ◽  
Amanda Grassamann da Silveira ◽  
Bruna Gabrieli Resner ◽  
Elio José Santini

O objetivo do presente trabalho foi avaliar o potencial de uso de partículas de resíduos de embalagens cartonadas e partículas de Eucalyptus grandis para a fabricação de compósitos, colados com adesivo à base de ureia-formaldeído. Foram utilizadas cinco diferentes proporções de madeira de E. grandis e embalagens cartonadas. As partículas de madeira e embalagens cartonadas foram produzidas em laboratório. A avaliação da qualidade dos compósitos envolveu a caracterização da geometria das partículas, das propriedades físicas: massa específica básica, teor de umidade de equilíbrio, absorção de água e inchamento em espessura após 2 e 24 horas de imersão em água e das propriedades mecânicas: flexão estática (MOE e MOR), resistência ao arrancamento de parafuso, ligação interna e dureza Janka. A incorporação de partículas de embalagens cartonadas proporcionou uma melhoria nas propriedades físicas em relação aos compósitos puros de madeira. Já para as propriedades mecânicas, compósitos com até 50% de embalagens cartonadas obtiveram melhores resultados, no entanto, a incorporação a partir de 75% ocasionou decadência nessas propriedades. Compósitos de madeira de E. grandis e embalagens cartonadas apresentaram potencial para utilização em ambientes internos e podem ser uma alternativa para a produção de compósitos sustentáveis e de boa qualidade.Palavra-chave: materiais sustentáveis, propriedades físicas e mecânicas, ureia-formaldeído. CARTONBOARD PACKAGING AS A RAW MATERIAL IN THE MANUFACTURE OF COMPOSITES ABSTRACT:The aim of this study was to evaluate the potential waste particles use of carton packaging and particles of E. grandis for the manufacture of particle boards, bonded with urea-formaldehyde-based adhesive. Five different proportions of E. grandis wood and cartons have been used. The wood particles and cartons were produced in the laboratory. The quality assessment panels involved characterizing the geometry of the particles, the physical properties: specific gravity, equilibrium moisture content, water absorption and thickness swelling after 2 and 24 hours of immersion in water and mechanical properties: flexural static (MOR and MOE), resistance to screw pullout, internal bond and Janka hardness. The incorporation of particulate cartons provided an improvement in physical properties relative to pure wood panels. As for the mechanical properties, panels of up to 50 % of cartons obtained best results, however, incorporating from 75 % decay caused these properties. The wood particleboard of E. grandis and cartons showed potential for use indoors and become an alternative for producing sustainable panels and of good quality.Keywords: sustainable materials, physical-mechanical properties; urea-formaldehyde. DOI:


PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


FLORESTA ◽  
2014 ◽  
Vol 44 (4) ◽  
pp. 715
Author(s):  
Rafael Da Rosa Azambuja ◽  
Daniela Silva Lilge ◽  
Elio José Santini ◽  
Clovis Roberto Haselein

AbstractPERFORMANCE OF TWO TYPES OF CEMENT IN PRODUCTION OF CEMENT BONDED WOOD PANELS COMBINED WITH RICE HULLThe objective of this study was to evaluate the performance of two types of cement in the manufacturing of cement bonded wood panels with addition of rice hull. Sealers used were cement V-ARI (CP V) and cement Portland IV, pozzolanic (CP IV). Proportions adopted in the composition of panels were 0, 50 and 100 % rice hulls combined with 100, 50 and 0% of wood particles. Species used in this study were Eucalyptus grandis and Pinus elliottii. Parameters considered to evaluate panels were the mechanical properties. CP IV did not cure with the addition of pine particles in any proportion. The values of modulus of rupture (MOR) were higher with CP IV, but with the addition of rice hulls they decreased. CP V shoved higher internal bond strength in all proportions studied. Addition of rice hulls decreased all the mechanical properties studied in this work, therefore its use in cement bonded wood panels must be controlled, larger quantities than 50% of total vegetal mass weight are not recommended. Using Bison process as a reference, CP IV presented the necessary requirements to be used in cement bonded wood panels.Keywords: Eucalyptus grandis; CP IV; CP V-ARI; agricultural waste. ResumoDesempenho de dois tipos de cimentos na produção de painéis cimento madeira combinados com casca de arroz. O objetivo deste trabalho foi avaliar o desempenho de dois tipos de cimento na manufatura de painéis cimento madeira com adição de casca de arroz. Os cimentos avaliados foram o cimento Portland V - ARI (CP V) e o cimento Portland IV, pozolânico (CP IV). As proporções usadas na composição dos painéis foram de 0, 50 e 100% de casca de arroz combinadas com 100, 50 e 0% de partículas de madeira, sendo as espécies utilizadas Eucalyptus grandis e Pinus elliottii. Os parâmetros utilizados para avaliar os painéis foram as propriedades mecânicas. O CP IV não foi capaz de curar com a adição das partículas de pinus em nenhuma proporção. Os valores de módulo de ruptura (MOR) foram maiores com o CP IV, porém com adição de casca de arroz estes foram decrescendo. O CP V apresentou maiores valores de ligação interna para todas as proporções estudadas. A adição da casca de arroz diminuiu todas as propriedades estudadas neste trabalho portanto a sua utilização em painéis cimento madeira deve ser controladas e não aconselhadas em quantidades maiores que 50% do peso da massa vegetal utilizada. Usando o processo Bison como referência, o CP IV apresentou os requerimentos necessários para uso como painéis cimento madeira.Palavras-chave: Eucalyptus grandis; CP IV; CP V-ARI; resíduo agrícola.


2011 ◽  
Vol 179-180 ◽  
pp. 807-811 ◽  
Author(s):  
Peng Luo ◽  
Chuan Min Yang

Wheat straw is one of the most abundant and cheap lignocellulosic waste materials in the world. Nowadays, field burning is the major practice for removing wheat straw due to lack of effective utilization, but it increases the air pollution and consequently affects public health. Wheat straw is an attractive lignocellulosic raw material for binderless particleboard production. In this study, steam explosion was adopted as pretreatment method for wheat straw. The pretreated wheat straw was used to produce binderless particleboard panels. The influence of both pretreatment temperature and residence time on chemical composition of wheat straw, and modulus of rupture, internal bond and water absorption of panel boards was investigated. The results showed that defiberation of wheat straw raw material occurred during steam explosion pretreatment. The modulus of rupture and internal bond increased while water absorption of panels decreased as pretreatment severity increased. The optimum pretreatment condition, with 19.8 MPa of modulus of rupture, 0.2572 MPa internal bond and 61.5% of water absorption of panels, occurred under 170°C temperature and 10 minute residence time.


2013 ◽  
Vol 631-632 ◽  
pp. 765-770
Author(s):  
Chuan Gui Wang ◽  
Shuan Gyan Zhang ◽  
Heng Wu

Cement bonded particleboards were manufactured form grapevine stalk particles. The physical and mechanical properties of the boards were assessed. Results revealed that the mixture of grapevine-cement for either treatment of particles, was graded as “low inhibition” when CaCl2 was incorporated, as determined by the hydration tests. Three factors namely grapevine-cement ratio, water-cement ratio and particle size were applied in this study for the board manufacturing. Increase in grapevine-cement ratio caused decrease in Modulus of rupture (MOR), Modulus of elasticity (MOE), Internal bond (IB), thermal conductivity and increase in Thickness swelling (TS). Increase in water-cement ratio caused decrease in MOR, MOE, IB, TS and thermal conductivity. The particle size resulted in little change in all, but TS. The MOR, MOE, IB of the boards were significantly affected by grapevine-cement and water-cement ratios except for TS. Only the effect of particle size on thermal conductivity is significant at 0.05 level significance.


Holzforschung ◽  
2017 ◽  
Vol 71 (7-8) ◽  
pp. 555-561 ◽  
Author(s):  
Ramunas Tupciauskas ◽  
Janis Gravitis ◽  
Janis Abolins ◽  
Andris Veveris ◽  
Martins Andzs ◽  
...  

Abstract The preparation of self-binding lignocellulosic fibreboards has been investigated. Different high-density fibreboards (HDF) were hot-pressed based on a mixture of grey alder (Alnus incana L. Moench) wood chips processed by steam explosion auto-hydrolysis (SE) and 15% or 25% lignin content from three different industrial sources: softwood kraft lignin (SWKL), soda wheat straw lignin (SoWhStL) and hydrolysis wheat straw lignin (HWhStL). Density, thickness swelling (TS) after immersion in water for 24 h, modulus of rupture (MOR), modulus of elasticity (MOE) and strength of internal bond (IB) of the board samples were determined. The amount (15% or 25%) and moisture content (MC) (18±1% or 5±2%) of the added lignin affected all the tested properties of the HDF except for density. However, the kind of the added lignin affects the obtained fibreboard more significantly compared to the control sample made without an admixture of lignin. In some cases, the tested values were diminished to half. The tested properties of the HDF samples produced with SoWhStL or HWhStL are compatible with standard requirements for medium-density fibreboard (MDF) for general use under dry conditions (EN 622-5, MDF), however, it depends on the lignin amount and MC.


2020 ◽  
Vol 109 ◽  
pp. 16-23 ◽  
Author(s):  
Błażej Wacikowski ◽  
Michał Michałowski

The possibility of using bacterial cellulose in particleboard technology. The paper presents the results of the influence of bacterial cellulose multiplication on industrial pine particles (used in wood materials technology), and then the use of the obtained biomass in the production of particleboards with reduced density LP1 type. Based on previous preliminary studies it was determined that the most effective growth of bacterial cellulose occurs using 5% wood particles in the breeding mixture. Two series of particleboards were produced: control and containing bacterial cellulose. Selected mechanical properties of produced particleboards (modulus of rupture, modulus of elasticity and internal bond) and selected physical properties (swelling and water absorption after 2 and 24 hours of soaking in water) were determined in turn. The boards made with bacterial cellulose had lower MOR and MOE values. Swelling after 2 and 24 hours was lower for boards with bacterial cellulose. The presented tests allow to state that bacterial cellulose can be a potential raw material ingredient in the production of particleboard while meeting the minimum requirements of the technical specification for boards with reduced density LP1.


Holzforschung ◽  
2002 ◽  
Vol 56 (4) ◽  
pp. 440-445 ◽  
Author(s):  
Y. Deng ◽  
T. Furuno

Summary This paper deals with the influence of length and content (based on a percentage of wood particles) of jute fibers on the physical and mechanical properties of gypsum-bonded particleboard (GPB). The length and amount of jute fibers had a significant effect on the internal bond strength (IB) and the modulus of rupture (MOR) of GPB. The addition of jute fibers did not obviously influence the modulus of elasticity (MOE), the thickness swelling (TS) or water absorption (WA). The values of IB were prominently high at the 3 mm length and 9–12% contents of jute fibers. The highest value of MOR was attained when the board was made with fibers 12 mm in length and a fiber content of 15%. The optimal amount of jute fibers reinforced the mechanical properties of GPB to achieve high performance. However, too much jute fiber reduced the IB, MOR (except for 12 mm length), and MOE of GPB. The values of TS and WA decreased gradually with an increase in the fiber content for all fiber lengths. In addition, the GPB gave very low weight loss on exposure to wood-decaying fungi of both Tyromyces palustris (TYP) and Coriolus versicolor (COV) as compared with untreated wood. It was concluded that the combination of 3 mm length and 9–12% content or 12 mm length and 15% content of jute fibers was the optimum for producing good performance of


Sign in / Sign up

Export Citation Format

Share Document