scholarly journals Mechanical properties of superionic ceramics based on (Cu1–xAgx)7GeSe5I solid solutions

2021 ◽  
Vol 24 (04) ◽  
pp. 372-377
Author(s):  
V.S. Bilanych ◽  
◽  
M.I. Babilya ◽  
D.M. Korovska ◽  
V.I. Studenyak ◽  
...  

Cu1–xAgx)7GeSe5I-based ceramics were prepared by pressing and sintering from the micro- and nanopowders. The ceramic samples were investigated using microstructural analysis. The microhardness was measured applying the indentation method with use of the Vickers pyramid. It has been shown that the microhardness of (Cu1–xAgx)7GeSe5I-based ceramics decreases with copper content decrease at Cu+→Ag+cationic substitution. The compositional dependences and size effects of microhardness inherent to (Cu1–xAgx)7GeSe5I-based ceramics have been analyzed. The size effects of microindentation have been interpreted within the framework of the gradient theory of plasticity.

2016 ◽  
Vol 675-676 ◽  
pp. 544-547
Author(s):  
Supalak Manotham ◽  
Thanatep Phatungthane ◽  
Tawee Tunkasiri ◽  
Komsanti Chokethawat

The properties of modified Bi0.5Na0.5TiO3 (BNT) based lead-free ceramics were investigated. The BNT-based ceramics were prepared by a two-steps sintering method. The ceramics were sintered at T1=1373 K and T2= 1173 K for various dwell times (0, 2, 4, and 8h). The properties of the ceramics were characterized by many techniques. The ceramic samples exhibited a pure perovskite phase with rhombohedral symmetry. The microstructural analysis by a scanning electron microscopy (SEM), indicated that all ceramics had a similar microstructure. Piezoelectric and mechanical properties of the ceramics were improved at a suitable dwell time at T2.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


Solids ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 50-59
Author(s):  
Wojciech Gilewski ◽  
Anna Al Sabouni-Zawadzka

This paper is dedicated to the extended solid (continuum) model of tensegrity structures or lattices. Tensegrity is defined as a pin-joined truss structure with an infinitesimal mechanism stabilized by a set of self-equilibrated normal forces. The proposed model is inspired by the continuum model that matches the first gradient theory of elasticity. The extension leads to the second- or higher-order gradient formulation. General description is supplemented with examples in 2D and 3D spaces. A detailed form of material coefficients related to the first and second deformation gradients is presented. Substitute mechanical properties of the lattice are dependent on the cable-to-strut stiffness ratio and self-stress. Scale effect as well as coupling of the first and second gradient terms are identified. The extended solid model can be used for the evaluation of unusual mechanical properties of tensegrity lattices.


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


2021 ◽  
Author(s):  
Chiheb Slama ◽  
Hassen Jaafar ◽  
Amal Karouia ◽  
Mohieddine Abdellaoui

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2865
Author(s):  
Md Jihad Miah ◽  
Md. Munir Hossain Patoary ◽  
Suvash Chandra Paul ◽  
Adewumi John Babafemi ◽  
Biranchi Panda

This paper investigates the possibility of utilizing steel slags produced in the steelmaking industry as an alternative to burnt clay brick aggregate (BA) in concrete. Within this context, physical, mechanical (i.e., compressive and splitting tensile strength), length change, and durability (porosity) tests were conducted on concrete made with nine different percentage replacements (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% by volume of BA) of BA by induction of furnace steel slag aggregate (SSA). In addition, the chemical composition of aggregate through X-ray fluorescence (XRF) analysis and microstructural analysis through scanning electron microscopy (SEM) of aggregates and concrete were performed. The experimental results show that the physical and mechanical properties of concrete made with SSA were significantly higher than that of concrete made with BA. The compressive and tensile strength increased by 73% when SSA fully replaced BA. The expansion of concrete made with SSA was a bit higher than the concrete made with BA. Furthermore, a significant lower porosity was observed for concrete made with SSA than BA, which decreased by 40% for 100% SSA concrete than 100% BA concrete. The relation between compressive and tensile strength with the porosity of concrete mixes are in agreement with the relationships presented in the literature. This study demonstrates that SSA can be used as a full replacement of BA, which is economical, conserves the natural aggregate, and is sustainable building material since burning brick produces a lot of CO2.


Wear ◽  
2013 ◽  
Vol 302 (1-2) ◽  
pp. 1453-1460 ◽  
Author(s):  
F.A.M. Alwahdi ◽  
A. Kapoor ◽  
F.J. Franklin

Author(s):  
M. Shunmugasundaram ◽  
A. Praveenkumar ◽  
L. Ponraj Sankar ◽  
S. Sivasankar

Mechanical properties of materials are enhanced by different methods to increase the usage of the materials. In this research spray pyrolysis method is employed to increase the mechanical characteristics of three different materials. The tin oxide is chosen as coated material and aluminium, brass, mild steel are selected as substrate materials. The 500nm thin film is developed over the substrate materials by spray pyrolysis. The substrate temperature are chosen as 300? C for aluminium, 400? C for brass and mildsteel. Nozzle to substrate distance is 0.4 m, substrate temperature is 300? C for aluminium and 400? C for solution concentration as 0.2 mole and solution flow rate is 1ml/min are selected for constant deposition parameters. The hardness and tensile strength result clearly shows that strength is increased by adding the coating over the surface. The material is heated above crystallization temperature and SnO2 increases the tensile and hardness strength of the materials. The triangular metrological microscope is used to examine the microstructure of non coated and coated substrate materials. The microstructural analysis is showed that the uncoated surface of the substrate material is full of rough and pores. And displays that the tin oxide coated surface of the substrates after the initial deposition disclosed a surface with a agglomeration of tin oxide in homogeneous and uniform than the uncoated substrates.


Sign in / Sign up

Export Citation Format

Share Document