Retention behavior of metal ions on tri-n-butyl phosphate and tri-n-butyl amine-impregnated silica gel G layers: Quantitative separation of lead from other metal ions and synthetic alloys

2019 ◽  
Vol 32 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Surendra Dutt Sharma ◽  
Charu Sharma
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
M. Ghaedi ◽  
M. Rezakhani ◽  
S. Khodadoust ◽  
K. Niknam ◽  
M. Soylak

In this research at first palladium nanoparticle attached to a new chemically bonded silica gel has been synthesized and has been characterized with different techniques such as X-ray diffraction (XRD), fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then, this new sorbent (chemically modified silica gel with N-propylmorpholine (PNP-SBNPM)) was efficiently used for preconcentration of some metal ions in various food samples. The influence of effective variables including mass of sorbent, flow rate, pH of sample solutions and condition of eluent such as volume, type and concentration on the recoveries of understudy metal ions were investigated. Following the optimization of variables, the interfering effects of some foreign ions on the preconcentration and determination of the investigated metal ions described. At optimum values of variables, all investigated metal ions were efficiently recovered with efficiency more than 95%, relative standard deviation (RSD) between 2.4 and 2.8, and detection limit in the range of 1.4–2.7 ng mL−1. The present method is simple and rapidly applicable for the determination of the understudied metal ions (ng mL−1) in different natural food samples.


2010 ◽  
Vol 6 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Buhani Buhani ◽  
Suharso Suharso ◽  
Zipora Sembiring

Sargassum duplicatum algae biomass is biological material which has a potency to be used as a biosorbent adsorb metal ions from industrial liquid waste, because it has effective functional group as a ligand. However, the ability of the algae biomass in adsorbing of heavy metal ions has some problem such as; tiny size, low density, and easy to be degradated by other microorganism. In addition, algae biomass can not be used directly in adsorption column for its application as the biosorbent. In order to improve physical and chemical prpperties of algae biomass, it needs to be immobilized on silica gel matrix. Series of experiment have been done, morphology analysis of adsorbent surface was performed by using Scanning Electron Microscopy (SEM) and adsorption process to examine the effectiveness of algae biomass immobilized in adsorbing Pb(II), Cu(II), and Cd(II) was performed using batch method at 27 °C. Concentration of metal was determined by using Atomic Absorption Spectrophotometer (AAS) and identification of functional group was conducted using Spectrophotometer Infrared (IR). Data obtained showed that interacting among metal ions with algae biomass is optimum at a range of 60 minutes. Adsorption energies of metal ions resulted from the interaction of metal ions with the functional group of -C=O group from carboxyl and amide on algae biomass and -Si-OH group from silica were at a range of 21.09-25.05 kJ/mole.   Keywords: biosorption, silica gel, Sargassum duplicatum, immobilization


2003 ◽  
Vol 68 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Marijana Acanski ◽  
Suzana Jovanovic-Santa ◽  
Lidija Jevric

The retention behavior and separation ability of a series of new 16,17-secoestrone derivatives has been studied on silica gel, alumina and C-18 silica gel layers with non-aqueous and aqueous-organic mobile phases. The retention behavior and separation ability are discussed in terms of the nature of the solute, eluent and stationary phase.


Sign in / Sign up

Export Citation Format

Share Document