scholarly journals MYOSTATIN COORDINATING THE PROLIFERATION AND DIFFERENTIATION OF ADIPOSE AND SKELETAL MUSCLE CELLS AND ENERGY METABOLISM BALANCE BASED ON GENE CHIP TECHNOLOGY

2021 ◽  
Vol 27 (spe2) ◽  
pp. 73-78
Author(s):  
Qijun Ren ◽  
Rihua Cong

ABSTRACT Myoblasts fuse into multinucleated muscle fibers to form and promote the growth of skeletal muscle. In order to analyze the role of myostatin (MSTN) in body fat, skeletal muscle cell proliferation and differentiation and energy metabolism, this study will use the antisense RNA technology of gene chip technology to study it. The results showed that the MSTN gene regulated the growth and proliferation of myoblasts and affected the development of skeletal muscle by affecting the expression of Cdc42, bnip2, p38 and other genes; knockout or overexpression of the MSTN gene would lead to a trend of fat-related genes from fat synthesis to fat decomposition; after the MSTN gene was knocked down, the expression levels of cpti-b, PPARG and other genes in the cells were corresponding after MSTN overexpression, the relative expression of the PPARG gene decreased. It is suggested that the knockout or overexpression of MSTN may affect lipid accumulation, and cpti-b and PPARG may directly regulate lipid level. It is hoped that this experiment can provide a reference for the study of MSTN effect on fat deposition.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 97-97
Author(s):  
Zong-ming Zhang ◽  
Chun-qi Gao ◽  
Hui-chao Yan ◽  
Xiu-qi Wang

Abstract Wnt/β-catenin plays a crucial role in skeletal muscle growth, but its specific mechanism still unclear. In this study, due to the distinct role of lysine in pig industry, we provided it as an entry point to investigate the role of Wnt/β-catenin in governing skeletal muscle growth. Firstly, total 18 weaned piglets were divided into three groups: control group, lysine deficiency group and lysine re-supplementation group (lysine levels added from 0.83% to 1.31% at 14 d). After 28 d experiment, all pigs were slaughtered to measure the change of Wnt/β-catenin in skeletal muscle. Secondly, satellite cell (SC) was isolated and cultured with Wnt activator, such as Wnt3a and WRN (Wnt3a, R-spondin1, Noggin) after lysine deficiency for 48 h to investigate cell proliferation and differentiation ability and the level of Wnt/β-catenin in different conditions. The results showed that compared with the control group, lysine deficiency significantly reduced longissimus dorsi muscle weight and Pax7 positive SC, and inhibited Wnt/β-catenin (P < 0.05). Fortunately, these restrictions were rescued to the control levels by lysine re-supplementation (P > 0.05). Meanwhile, compared with the lysine deficiency group, the MTT and western blotting assay showed cell proliferation ability was significantly increased with re-activated Wnt/β-catenin by re-supplemented lysine, Wnt3a or WRN (P < 0.05), respectively. Moreover, under the condition of cell differentiation, compared with the control group, cell fusion index was significantly decreased in the lysine deficiency group (P < 0.05), whereas it was significantly increased with lysine re-supplementation group, Wnt3a or WRN respective supplementation group in comparison with the lysine deficiency group (P < 0.05). In addition, compared with the lysine deficiency group, the protein levels of myogenic regulatory factors and Wnt/β-catenin pathway were also re-activated by re-supplemented lysine, Wnt3a or WRN (P < 0.05). Collectively, we found Wnt/β-catenin activation is required for porcine SC proliferation and differentiation to promote skeletal muscle growth.


2005 ◽  
Vol 17 (9) ◽  
pp. 63
Author(s):  
M. Grounds

Skeletal muscle is formed by mononucleated precursor cells (myoblasts) that cease cell proliferation to start differentiation; this results in fusion between the myoblasts to form multinucleated cells (myotubes) that continue to differentiate (and fuse with more muscle cells) and mature into myofibres. Myogenesis has been widely used as a model to study in vitro factors controlling cell proliferation and differentiation. Condition in vitro may not reflect what happens in the more complex in vivo environment. Some of the key issues are what activates quiescent myoblasts in mature skeletal muscle in vivo, and what controls the switch between proliferation and differentiation? The role of the matrix, and molecules such as MyoD, p53, NFAT and IGF-1 will be considered.


2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


1988 ◽  
Vol 8 (2) ◽  
pp. 963-973
Author(s):  
J T Holt ◽  
R L Redner ◽  
A W Nienhuis

To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4774
Author(s):  
Giulia Anichini ◽  
Laura Carrassa ◽  
Barbara Stecca ◽  
Fabio Marra ◽  
Chiara Raggi

Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and, along with hepatocellular carcinoma (HCC), is the predominant type of primitive liver cancer in adults. The lack of understanding of CCA biology has slowed down the identification of novel targets and the development of effective treatments. While tumors share some general characteristics, detailed knowledge of specific features is essential for the development of effectively tailored therapeutic approaches. The Hedgehog (HH) signaling cascade regulates stemness biology, embryonal development, tissue homeostasis, and cell proliferation and differentiation. Its aberrant activation has been associated with a variety of solid and hematological human malignancies. Several HH-inhibiting compounds have been indeed developed as potential anticancer agents in different types of tumors, with Smoothened and GLI inhibitors showing the most promising results. Beside its well-established function in other tumors, findings regarding the HH signaling in CCA are still controversial. Here we will give an overview of the most important clinical and molecular features of cholangiocarcinoma, and we will discuss the available evidence of the crosstalk between the HH signaling pathway and the cholangiocarcinoma cell biology.


2021 ◽  
pp. 1-13
Author(s):  
Yuying Wang ◽  
Rui He ◽  
Anqi Yang ◽  
Rui Guo ◽  
Jie Liu ◽  
...  

BACKGROUND: The effectiveness and availability of conservative therapies for osteonecrosis of the femoral head (ONFH) are limited. Transplantation of bone marrow mesenchymal stem cells (BMSCs) combined with Bio-Oss, which is a good bone scaffold biomaterial for cell proliferation and differentiation, is a new potential therapy. Of note, the expression of miRNAs was significantly modified in cells cultured with Bio-Oss, and MiR-214 was correlated positively with osteonecrosis. Furthermore, miR-214 was upregulated in cells exposed to Bio-Oss. OBJECTIVE: To investigate whether targeting miR-214 further improves the transplantation effect. METHODS: We treated BMSCs with agomiR-214 (a miR-214 agonist), antagomiR-214 (a miR-214 inhibitor), or vehicle, followed by their transplantation into ONFH model rats. RESULTS: Histological and histomorphometric data showed that bone formation was significantly increased in the experimental groups (Bio-Oss and BMSCs treated with antagomiR-214) compared with other groups. CONCLUSIONS: miR-214 participates in the inhibition of osteoblastic bone formation, and the inhibition of miR-214 to bone formation during transplantation therapy with Bio-Oss combined with BMSCs for ONFH.


2019 ◽  
Vol 317 (1) ◽  
pp. C3-C19 ◽  
Author(s):  
Qingyi Ma ◽  
Lubo Zhang ◽  
William J. Pearce

MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21–25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3′-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.


2019 ◽  
Vol 127 (2) ◽  
pp. 342-355 ◽  
Author(s):  
Cecilie J. L. Bechshøft ◽  
Peter Schjerling ◽  
Michael Kjaer ◽  
Abigail L. Mackey

Underpinning skeletal muscle plasticity is the interplay between many cell types, of which fibroblasts are emerging as potent players, both negatively in the development of fibrosis but also positively in stimulating muscle repair through enhancing myogenesis. The mechanisms behind this interaction however remain unknown. To investigate this, waste hamstring muscle tissue was obtained from eight healthy young men undergoing reconstructive anterior cruciate ligament surgery and primary myoblasts and fibroblasts were isolated. Myoblasts were cultured alone or with fibroblasts, either in direct or indirect contact (separated by an insert with a permeable membrane). The myogenesis parameters proliferation, differentiation, and fusion were determined from immunostained cells, while, in replicate samples, gene expression levels of GAPDH, Ki67, Pax7, MyoD, myogenin, myomaker, MHC-Iβ, TCF7L2, COL1A1, and p16 were determined by RT-PCR. We found only trends for an influence of skeletal muscle fibroblasts on myogenic cell proliferation and differentiation. While greater mRNA levels of GAPDH, Pax7, MyoD, myogenin, and MHC-Iβ were observed in myogenic cells in indirect contact with fibroblasts (insert) when compared with cells cultured alone, a similar effect of an empty insert was also observed. In conclusion we find very little influence of skeletal muscle fibroblasts on myoblasts derived from the same tissue, although it cannot be excluded that a different outcome would be seen under less optimal myogenic growth conditions. NEW & NOTEWORTHY Using passage one primary myoblasts and fibroblasts isolated from human skeletal muscle, we found only a trend for an effect of skeletal muscle fibroblasts on myogenic cell proliferation and differentiation. This is contrary to previous reports and raises the possibility that fibroblasts of different tissue origins exert distinct roles.


Sign in / Sign up

Export Citation Format

Share Document