scholarly journals Growth and gas exchange of soursop under salt stress and hydrogen peroxide application

Author(s):  
Luana L. de S. A. Veloso ◽  
André A. R. da Silva ◽  
Geovani S. de Lima ◽  
Carlos A. V. de Azevedo ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT The cultivation of irrigated soursop in semiarid Northeastern Brazil highlights the need for information regarding its responses to the salinity of irrigation water and the use of techniques that allow its exploration, such as the use of hydrogen peroxide. Thus, the study aimed to evaluate the effect of soaking of seeds and foliar application of hydrogen peroxide on soursop plant growth and physiology under conditions of salt stress. The study was conducted in lysimeters in a greenhouse, and the treatments were distributed in a randomized block design and 4 × 4 factorial scheme, with four values of electrical conductivity of the irrigation water - ECw (0.7, 1.7, 2.7, and 3.7 dS m-1) and four concentrations of H2O2 (0, 25, 50, and 75 μM), with three replicates and one plant per plot. H2O2 concentrations were applied via seed imbibition and foliar spray. Irrigation with water from 0.7 dS m-1 impairs gas exchange and absolute growth rates of plant height and stem diameter and relative growth rate in height of soursop plants. Concentrations of 35, 33 and 23 µM of hydrogen peroxide favored the relative and absolute growth rates of plant height and transpiration, respectively. Compared to the aerial part, the root of soursop plants is more affected when irrigated with water from 1.6 dS m-1.

Author(s):  
André A. R. da Silva ◽  
Geovani S. de Lima ◽  
Carlos A. V. de Azevedo ◽  
Luana L. de S. A. Veloso ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT This study aimed to evaluate the gas exchanges and photosynthetic pigments of soursop seedlings cv. ‘Morada Nova’ irrigated with saline waters and subjected to exogenous application of hydrogen peroxide by seed soaking and foliar spraying. The study was carried out using plastic bags under greenhouse conditions at the Center of Technology and Natural Resources of the Federal University of Campina Grande, PB, Brazil, using a eutrophic Regolithic Neosol of sandy loam texture. Treatments were arranged in a randomized block design, in 5 x 5 factorial scheme, which consisted of five levels of electrical conductivity – ECw (0.7; 1.4; 2.1; 2.8 and 3.5 dS m-1) of irrigation water and five concentrations of hydrogen peroxide - H2O2 (0, 25, 50, 75 and 100 µM), with four replicates and three plants per plot. As the salt stress increased, there were reductions in internal CO2 concentration, instantaneous carboxylation efficiency and water use efficiency, and instantaneous carboxylation efficiency was the most sensitive variable. Hydrogen peroxide at concentrations of 25 and 50 µM attenuated the deleterious effects of water salinity on stomatal conductance, CO2 assimilation rate and chlorophyll a content, and the concentration of 25 µM was the most efficient. The content of chlorophyll b and carotenoids of soursop cv. ‘Morada Nova’ had the deleterious effects caused by the salinity of irrigation water mitigated by the exogenous application of hydrogen peroxide in the concentration of 25 μM.


2021 ◽  
Vol 15 ◽  
Author(s):  
Juvenaldo Florentino Canjá ◽  
Josimar De Azevedo ◽  
Geocleber Gomes de Sousa ◽  
Clarissa Lima Magalhães ◽  
Thales Vinícius De Araújo Viana

Zucchini culture is slightly sensitive to salinity and is among the ten vegetables of highest economic value, with characteristics of precocity and easy cultivation. These characteristics are some of the reasons for the expansion of its cultivation among small producers. Thus, the objective was to evaluate the effect of different levels of salinity in the irrigation water and biofertilizer types on the initial growth of the zucchini (Cucurbita pepo L.) culture. The experiment was carried out in the full sunlight in a randomized block design, in a 5x2 factorial arrangement. The treatments consisted of a combination of five types of biofertilizers (quail, sheep, mixed, bovine, and crab) and two salinity levels of the irrigation water (0.8 and 2.5 dS m-1), with five replicates. At 30 days after transplanting, the following variables were evaluated: electrical conductivity of the substrate, plant height, number of leaves, roots length, stem diameter, leaf area, chlorophyll content, dry mass of the aerial part, root dry mass, and total dry mass. Salt stress negatively interferes with the accumulation of zucchini plant biomass. Quail, bovine, and sheep biofertilizers are more efficient about plant height, number of leaves, and stem diameter. The sheep biofertilizer attenuates the salt stress for the dry mass of the aerial part, the root, and the total dry mass.


2019 ◽  
Vol 10 (4) ◽  
pp. 484-490 ◽  
Author(s):  
André Alisson Rodrigues Da Silva ◽  
Geovani Soares De Lima ◽  
Carlos Alberto Vieira de Azevedo ◽  
Luana Lucas De Sá Almeida Veloso ◽  
Jessica Dayanne Capitulino ◽  
...  

The exogenous use of hydrogen peroxide is an alternative in the acclimatization of plants to salt stress due to the greater activity of antioxidant enzymes. In this perspective, this study aimed to evaluate the gas exchange and the growth of soursop seedlings under salt stress using hydrogen peroxide. The study was conducted under greenhouse conditions. The treatments were distributed in randomized blocks, in a 5 x 2 factorial arrangement, related to five levels of electrical conductivity of the irrigation water - ECw (0.6, 1.2, 1.8, 2.4, and 3.0 dS m-1) and two concentrations of hydrogen peroxide - H2O2 (0 and 20 μM), with four replicates and two plants per plot. The effects of the treatments were evaluated by the variables of gas exchange and growth. The increase in water salinity negatively affected the gas exchange and the growth of the soursop seedlings. The gas exchange and growth variables presented deleterious effects caused by the salinity of the irrigation water, mitigated by the exogenous application of hydrogen peroxide at the concentration of 20 μM. The exogenous use of hydrogen peroxide at the concentration of 20 μM can be used to induce salt tolerance in soursop seedlings.


2019 ◽  
Vol 49 ◽  
Author(s):  
André Alisson Rodrigues da Silva ◽  
Geovani Soares de Lima ◽  
Carlos Alberto Vieira de Azevedo ◽  
Hans Raj Gheyi ◽  
Leandro de Pádua Souza ◽  
...  

ABSTRACT The semi-arid region of the Brazilian Northeast has adequate edaphoclimatic conditions for the passion fruit production, but the water used for irrigation commonly has high concentrations of salts that are harmful to the plant growth and development. A previous supply of hydrogen peroxide induces the acclimation of plants under saline stress conditions, reducing deleterious effects on their growth and physiology. This study aimed to evaluate the gas exchanges and growth of passion fruit as a function of irrigation with saline water and exogenous application of hydrogen peroxide. The experiment was carried out under greenhouse conditions, using a randomized block design, in a 4 x 4 factorial arrangement, being four levels of irrigation water electrical conductivity (0.7 dS m-1, 1.4 dS m-1, 2.1 dS m-1 and 2.8 dS m-1) and four hydrogen peroxide concentrations (0 µM, 25 µM, 50 µM and 75 µM), with four replicates and two plants per plot. The hydrogen peroxide application attenuated the deleterious effects of the irrigation water salinity on transpiration, CO2 assimilation rate, internal carbon concentration, plant height and leaf area of yellow passion fruit, at 60 days after sowing, with the concentration of 25 µM being the most efficient. Irrigation using water with electrical conductivity above 0.7 dS m-1 negatively affects the gas exchanges and growth of passion fruit, being the stomatal conductance and leaf area the most sensitive variables to the salt stress.


2020 ◽  
Vol 41 (6supl2) ◽  
pp. 3039-3052
Author(s):  
Geovani Soares de Lima ◽  
◽  
Charles Macedo Félix ◽  
Saulo Soares da Silva ◽  
Lauriane Almeida dos Anjos Soares ◽  
...  

In the semi-arid region of Northeastern Brazil, due to the occurrence of excess salts, both in the water and soil, plants are constantly exposed to various conditions of abiotic stress. Thus, it is extremely important to identify methods capable of minimizing the effects of salt stress on plants as a way to ensure the expansion of irrigated areas. In this context, the objective of this study was to evaluate the gas exchange, growth, and production of mini-watermelon irrigated with saline waters and fertilized with phosphorus. The experiment was conducted in pots under greenhouse conditions in Pombal, PB, Brazil, using a randomized block design in a 5 x 4 factorial scheme, corresponding to five levels of electrical conductivity of irrigation water—ECw (0.3, 1.3, 2.3, 3.3, and 4.3 dS m-1), four phosphorus doses— PD (60, 80, 100, and 120% of the recommendation), and with three replicates. Watermelon plants cv. Sugar Baby were sensitive to water salinity greater than 0.3 dS m-1, with more pronounced inhibition of gas exchange, growth, and production. Reduction in the CO2 assimilation rate of watermelon plants cv. Sugar Baby was associated with factors of stomatal and non-stomatal origin. Phosphorous doses corresponding to 73 and 88% of the recommended values promoted an increase in the intercellular CO2 concentration and stem diameter of mini-watermelon plants. P2O5 doses ranging from 60 to 120% of the recommendation did not mitigate the effects of salt stress on the cultivation of watermelon cv. Sugar Baby.


Author(s):  
André A. R. da Silva ◽  
Luana L. de S. A. Veloso ◽  
Geovani S. de Lima ◽  
Carlos A. V. de Azevedo ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT The objective of the present study was to evaluate the effect of exogenous application of hydrogen peroxide on the emergence, growth and gas exchange of yellow passion fruit seedlings subjected to salt stress. The experiment was conducted in pots (Citropote®) under greenhouse conditions, in the municipality of Campina Grande, PB, Brazil. Treatments were distributed in a randomized block design, in a 4 x 4 factorial arrangement, with four levels of electrical conductivity of irrigation water (0.7, 1.4, 2.1 and 2.8 dS m-1) associated with four concentrations of hydrogen peroxide (0, 25, 50 and 75 μM), with four replicates and two plants per plot. Irrigation using water with electrical conductivity above 0.7 dS m-1 negatively affects the emergence and growth of passion fruit. Hydrogen peroxide concentrations between 10 and 30 μM induce the acclimation of passion fruit plants to salt stress, mitigating the deleterious effects of salinity on the relative growth rate in stem diameter and leaf area, stomatal conductance, transpiration, CO2 assimilation rate and instantaneous carboxylation efficiency. Irrigation water salinity combined with hydrogen peroxide concentrations above 30 μM causes reduction in passion fruit growth and physiology.


2021 ◽  
Vol 42 (3) ◽  
pp. 999-1018
Author(s):  
Eliene Araújo Fernandes ◽  
◽  
Lauriane Almeida dos Anjos Soares ◽  
Geovani Soares de Lima ◽  
Alzira Maria de Sousa Silva Neta ◽  
...  

The semi-arid region of Northeastern Brazil has water limitations in terms of both quantity and quality, with salt stress as a limiting factor for increasing yield in most crops. In this context, the present study aimed to evaluate cell damage, gas exchange, and growth of custard apple under salt stress and potassium fertilization. The research was carried out at the Experimental Farm of CCTA/UFCG, in São Domingos-PB, Brazil. A randomized block design was arranged in a 2 × 5 factorial scheme, with two levels of electrical conductivity of irrigation water (ECw; 1.3 and 4.0 dS m-1) and five potassium doses (10, 15, 20, 25, and 30 g of K2O per plant per year). Water salinity of 4.0 dS m-1 negatively affected the stem diameter and number of leaves in custard apple at 179 and 210 days after transplanting (DAT). The highest relative growth in stem diameter in the period of 179-245 DAT was obtained in plants irrigated with 4.0 dS m-1 water and fertilized with 20 g of K2O per plant. Potassium doses of up to 30 g of K2O resulted in a higher percentage of cell damage and relative water content in custard apple leaf tissue. Water saturation deficit decreased with the increase in K2O doses in plants irrigated with water of 1.3 dS m-1. Irrigation with 1.3 dS m-1 water and estimated K2O doses ranging from 16 to 22 g per plant resulted in an increase in stomatal conductance, transpiration, CO2 assimilation rate, and instantaneous carboxylation efficiency in custard apple plants at 210 DAT.


2020 ◽  
pp. 1-12
Author(s):  
E. K. Al-Fahdawe ◽  
A. A. Al-Sumaidaie ◽  
Y. K. Al-Hadithy

A pots experiment was conducted at the Department of Biology/College of Education for Girls/University of Anbar during Autumn season of 2018-2019 to study the effect of the salinity irrigation water and spray by humic acid in some of morphological, physiological, growth and yield traits of wheat cv. IPa. The experiment was randomized complete block design (RCBD) with three replications. The first factor was assigned for irrigation by saline water at four level (S0, S1, S2 and S3), while the second factor was the foliar spraying of humic acid in three level (0.0, 1.0 and 1.5 g l-1). The results showed that there was significant reduction in plant height, vegetative dry weight, biological yield and chlorophyll leaves content when the plants were irrigated by saline water approached to 41.09 cm, 0.747 g, 0.849 g plant-1 and 38.67 SPAD, respectively at salinity level of 8.3 ds m-1 compared with the plants which irrigated by fresh water. The total carbohydrates were significantly decreased at the treatment of 8.3 ds m-1 reached 18.71 mg g-1. Spray levels humic acid achieved a significant increase in plant height, dry weight of the vegetative part, biological yield and chlorophyll leaves content sprayed at 1.0 and 1.5 g l-1 compared to no sprayed. Nitrogen concentration was significantly increased, while both phosphorus and potassium were decreased in the vegetative parts of wheat as the salinity of irrigation water increased. However, the increase of humic acid levels led to significant increasing in nitrogen, phosphorus and potassium concentration.


2018 ◽  
Vol 10 (10) ◽  
pp. 151 ◽  
Author(s):  
Adriana da S. Santos ◽  
Railene H. C. R. Araújo ◽  
Reginaldo G. Nobre ◽  
Valéria F. de O. Sousa ◽  
Marília H. B. S. Rodrigues ◽  
...  

Hydrogen peroxide (H2O2) is a molecule that can flag plants under biotic and abiotic stress conditions. Among the kinds of stress, the salinity stress is the one that most usually affects plants. Consequently, the purpose hereof was to use hydrogen peroxide (H2O2) to mitigate the possible harmful effects of salinity in yellow passion fruit seedlings. We employed a randomized block design, in a 5 × 3 factorial scheme, corresponding to five irrigation water electric conductivity levels (0.3; 1.3; 2.3; 3.3; and 4.3 dS m-1) and three hydrogen peroxide concentrations (0; 5; and 15 μmol L-1), with four repetitions. The treatments were applied foliarly 7 and 15 days after the seedlings’ germination with hand sprayers. Sixty days after sowing, we evaluated the seedlings’ growth and quality variables, which finally proved that hydrogen peroxide mitigates the harmful effect of the irrigation water’s salinity up to 2 dS m-1 in the growth of yellow passion fruit seedlings at the concentration of 5 μmol/L. Nonetheless, excessive concentrations (15 μmol L-1) associated with high salt concentrations were proven detrimental to the seedlings’ phenological growth and quality.


2020 ◽  
Vol 11 ◽  
pp. e3400
Author(s):  
Genilson Lima Diniz ◽  
Reginaldo Gomes Nobre ◽  
Geovani Soares de Lima ◽  
Leandro de Pádua Souza ◽  
Lauriane Almeida dos Anjos Soares ◽  
...  

The semiarid region of Northeastern Brazil is characterized by long drought periods, and the use of saline waters appears as an alternative for the expansion of irrigated areas. Associated with the use of these waters, silicon fertilization constitutes an important attenuator of salt stress. In this perspective, this study aimed to evaluate the phytomass production and quality of the passion fruit cultivar ‘Gigante Amarelo’ grown with saline water and silicon fertilization. The experiment was conducted in a plant nursery belonging to the Center of Agrifood Science and Technology, in the municipality of Pombal-PB. A completely randomized block design in a 5 x 5 factorial scheme was used, referring to five levels of electrical conductivity of the irrigation water (0.3, 1.0, 1.7, 2.4, and 3.1 dS m-1) and five doses of silicon fertilization (0; 25; 50; 75, and 100 g of potassium silicate/plant), with four replications and two plants per plot. The phytomass accumulation (leaves, stem, and roots), as well as the total dry phytomass, shoot dry phytomass, root/shoot ratio, and the quality index of Dickson were evaluated. The data obtained were subjected to the F-test at 0.01 and 0.05 level of probability. The electrical conductivity of water from 0.3 dS m-1 caused the decrease of phytomass production in seedlings of the passion fruit cultivar ‘Gigante Amarelo’, although it is possible to produce good quality passion fruit seedlings with water salinity up to 3.1 dS m-1. The doses of silicon fertilization mitigated the effect of salt stress on the root/shoot ratio of plants of the passion fruit cultivar ‘Gigante Amarelo’.


Sign in / Sign up

Export Citation Format

Share Document