Dark cytotoxicity of submicrometer vaterite particles loaded with photosensitizer Fotoditazin and the vaterite-based core – shells structures

2021 ◽  
Vol 19 (3) ◽  
pp. 333-338
Author(s):  
Roman A. Verkhovskii ◽  
Olga V. Nechaeva ◽  
Olga I. Guslyakova ◽  
Yulia I. Svenskaya

Photodynamic therapy (PDT) is based on the use of photosensitizers together with a light at the wavelength corresponding to its absorption maximum. Photosensitizers are able to generate reactive oxygen species under the visible or infrared light irradiation. They are broadly used for the treatment of cancer and infections due to their physical and chemical properties. Dose-dependent light induced cytotoxicity of photosensitizers shows the strong relation between its concentration in the treatment area and PDT efficiency. With this regard, the development of novel carriers for targeted delivery of photosensitizers is a very prospective research direction, as allows for the enhancement of the local drug concentration in the treatment area and the reduction of the incidental dark toxicity in healthy tissue associated with a classic PDT. Mesoporous vaterite particles are considered as a promising tool for biomedical application due to their biodegradability, high payload ability, as well as to the simplicity and cheapness of their fabrication. The efficiency of vaterite carrier application for a PDT delivery system design has been previously demonstrated. With this regard, the current study was aimed at the evaluation of dark cytotoxicity of the submicron vaterite particles and the vaterite-based core-shells, both loaded with Fotoditazin photosensitizer.

2020 ◽  
Vol 15 ◽  

This paper presents the results of practical mechanical tests of motor oils, their specifications and characteristics and the effect of their physical and chemical properties on the performance of the engine. The performance of the engine has a strong relation with the engine oil type and efficiency. The degree of stability of oils properties is very important because if oil or lubricants lose their properties, mechanical and chemical excessive corrosion of the motor metals may occur. Consequently, damage occurs to one or more parts of the engine, thereby the system is breaking down where the cost of downtime is too expensive. It has been found that a higher viscosity value is not the optimum as it increases temperature and energy consumption due to frictional losses. The values required for viscosity is the ideals that gives the stable results regardless temperature variations under any conditions of operation, at which the power losses are minimal and the fuel economy is optimal.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 601 ◽  
Author(s):  
Wallyn ◽  
Anton ◽  
Vandamme

The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and diagnosis involving two guided-nanoparticles (NPs) as nanoprobes and contrast agents. Considerable efforts have been devoted to designing iron oxide NPs (IONPs) due to their superparamagnetic (SPM) behavior (SPM IONPs or SPIONs) and their large surface-to-volume area allowing more biocompatibility, stealth, and easy bonding to natural biomolecules thanks to grafted ligands, selective-site moieties, and/or organic and inorganic corona shells. Such nanomagnets with adjustable architecture have been the topic of significant progresses since modular designs enable SPIONs to carry out several functions simultaneously such as local drug delivery with real-time monitoring and imaging of the targeted area. Syntheses of SPIONs and adjustments of their physical and chemical properties have been achieved and paved novel routes for a safe use of those tailored magnetic ferrous nanomaterials. Herein we will emphasis a basic notion about NPs magnetism in order to have a better understanding of SPION assets for biomedical applications, then we mainly focus on magnetite iron oxide owing to its outstanding magnetic properties. The general methods of preparation and typical characteristics of magnetite are reviewed, as well as the major biomedical applications of magnetite.


2021 ◽  
Vol 2 (10) ◽  
pp. 977-984
Author(s):  
Divya Chauhan ◽  
Mohammad Ashfaq ◽  
Neetu Talreja ◽  
Ramalinga Viswanathan Managalraja

Recently 2D materials are booming in the field of energy, environment, and biomedical application. Incorporation of metal/non-metal within 2D materials significantly influences the physical and chemical properties, making them intriguing materials for various applications. The advancement of 2D material requires strategic modification by manipulating the electronic structure, which remains a challenge. Herein, we describe 2D materials for the environment, energy, and biomedical application. A predominant aim of this short communication is to summarize the literature on the advanced environment, energy, and biomedical application (especially COVID-19).


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Patricia E. Edem ◽  
Jesper Fonslet ◽  
Andreas Kjær ◽  
Matthias Herth ◽  
Gregory Severin

In vivo radionuclide generators make complex combinations of physical and chemical properties available for medical diagnostics and therapy. Perhaps the best-known in vivo generator is 212Pb/212Bi, which takes advantage of the extended half-life of 212Pb to execute a targeted delivery of the therapeutic short-lived α-emitter 212Bi. Often, as in the case of 81Rb/81Kr, chemical changes resulting from the transmutation of the parent are relied upon for diagnostic value. In other instances such as with extended alpha decay chains, chemical changes may lead to unwanted consequences. This article reviews some common and not-so-common in vivo generators with the purpose of understanding their value in medicine and medical research. This is currently relevant in light of a recent push for alpha emitters in targeted therapies, which often come with extended decay chains.


2020 ◽  
Vol 19 (2) ◽  
pp. 82-89
Author(s):  
O. V. Bakina ◽  
N. V. Svarovskaya ◽  
A. A. Miller ◽  
A. S. Lozhkomoev ◽  
A. V. Avgustinovich ◽  
...  

Introduction. There are high-thech methods of nanoparticle production with controlled morphology and physical and chemical properties. Alumina-based mesoporous nanostructures have low toxicity and biocompatibility. FDI recommends alumina for biomedical application. Alumina inhibits the grow of cancer due to positive zeta-potential and low solubility in water. We observed the synergistic effect of joint application of doxorubicin and nanostructures. This approach reduces drug concentration and its toxicity.Purpose: to synthesize nanostructures with different surface potentials and to study toxicity of these nanostructures alone and in combination with doxorubicin.Material and Methods. The alumina-based nanostructures were obtained by the hydrolysis of nanopowder. The morphology of nanostructures was investigated by transmission electron microscopy with an integrated system of energy dispersive analysis. The phase composition of the particles was determined by x-ray diffraction. The effect of the synthesized nanostructures on the viability of cell lines was determined using the MTT test.Results. The synthesized nanostructures have a low toxicity and can be used as an adjuvant for doxorubicin.Conclusion. The combined use of doxorubicin and bicomponent nanostructures leads to an increase in the damaging effect of doxorubicin on Neuro-2a cells.


Author(s):  
Johan Karlsson ◽  
Hannah J. Vaughan ◽  
Jordan J. Green

Polymeric nanoparticles have tremendous potential to improve the efficacy of therapeutic cancer treatments by facilitating targeted delivery to a desired site. The physical and chemical properties of polymers can be tuned to accomplish delivery across the multiple biological barriers required to reach diverse subsets of cells. The use of biodegradable polymers as nanocarriers is especially attractive, as these materials can be designed to break down in physiological conditions and engineered to exhibit triggered functionality when at a particular location or activated by an external source. We present how biodegradable polymers can be engineered as drug delivery systems to target the tumor microenvironment in multiple ways. These nanomedicines can target cancer cells directly, the blood vessels that supply the nutrients and oxygen that support tumor growth, and immune cells to promote anticancer immunotherapy.


2021 ◽  
Vol 926 (1) ◽  
pp. 012054
Author(s):  
L Destiarti ◽  
I Kartini ◽  
Riyanto ◽  
Roto ◽  
Mudasir

Abstract Graphene is a nanomaterial with unique physical and chemical properties. The two-dimensional hexagonal sp2 structure in the honeycomb lattice has high thermal conductivity, high electricity, mechanical strength, and large surface area. The nano properties are significantly different from the bulk material. The review of the material, synthesis and application aspects of graphene gave rise to risk analysis in each field of study. Graphene material does not yet have adequate information regarding the risk of danger. Because graphene is nano-sized, this material can enter the human body through inhalation, ocular, cutaneous and oral. Graphene synthesis involves using chemicals that will produce hazardous products and reduce agents with high toxicity. The risk becomes more and more when the challenges of mass production of graphene are faced. Graphene can be applied as sensors, nanoelectronics, and biomedical applications. In this biomedical application, graphene has direct contact with humans and can increase reactive oxygen species in the body. The recommendation to overcome the risk is to use personal protective equipment and handle graphene material properly. The toxic materials involve in the synthesis step can be replaced with other environmentally friendly materials. Antidotes substances can reduce the toxicity of graphene materials so that the risks graphene in its application can be overcome.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Weili Qiao ◽  
Bochu Wang ◽  
Yazhou Wang ◽  
Lichun Yang ◽  
Yiqiong Zhang ◽  
...  

Targeted delivery of drug molecules to tumor tissue is one of the most interesting and challenging endeavors faced in pharmaceutical field, due to the critical and pharmacokinetically specific environment that exists in tumor. Over these years, cancer targeting treatment has been greatly improved by new tools and approaches based on nanotechnology. The review firstly introduces the specific physical and chemical properties of a serial of nanomaterials, such as nanoparticles, micelles, dendrimers, carbon nanotubes, quantum dots, and nanofibers. It then places great emphasis on their application in the field of cancer therapy when they are used as nanocarrier systems. Based on the current status, the paper further discusses the unsolved problems and makes a perspective for the future prospects of the nanocarrier systems.


2019 ◽  
Vol 8 (3) ◽  
pp. 5939-5941 ◽  

Advanced research direction for expanding the range of bakery products is the production of dietary salt-free bread, with the addition of food additives of plant and animal origin. This paper presents the formulation of dietary salt free bread. Flax seeds, pollen, curd whey and DVS Bifidus bacteria preparation are used in preparation of bread. The physical and chemical indicators and sensory profile of dietary salt free bread evaluated. Developed dietary salt free bread contains more protein (9.0 g/100g), carbohydrates (53.4 g/100g), fibers (7.0 g/100g) and minerals (2.5 g/100g) compared with traditional wheat bread.


Sign in / Sign up

Export Citation Format

Share Document