scholarly journals Correction: Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells

Oncotarget ◽  
2018 ◽  
Vol 9 (25) ◽  
pp. 17978-17978 ◽  
Author(s):  
Xin-Xing Zhu ◽  
Ya-Wei Yan ◽  
Demeng Chen ◽  
Chun-Zhi Ai ◽  
Xifeng Lu ◽  
...  
Oncotarget ◽  
2016 ◽  
Vol 7 (39) ◽  
pp. 63561-63570 ◽  
Author(s):  
Xin-Xing Zhu ◽  
Ya-Wei Yan ◽  
Demeng Chen ◽  
Chun-Zhi Ai ◽  
Xifeng Lu ◽  
...  

2017 ◽  
Vol 445 (1-2) ◽  
pp. 59-65 ◽  
Author(s):  
Xiaobo Feng ◽  
Tao Lin ◽  
Xianzhe Liu ◽  
Cao Yang ◽  
Shuhua Yang ◽  
...  

2018 ◽  
Vol 243 (13) ◽  
pp. 1074-1082 ◽  
Author(s):  
Xiujun Li ◽  
Jiali Wang ◽  
Yuchen Pan ◽  
Yujun Xu ◽  
Dan Liu ◽  
...  

Further studies on the molecular mechanisms of mesenchymal stem cells in the maintenance of growth and function are essential for their clinical application. Growing evidence has shown that long non-coding RNAs (lncRNAs) play an important role in the regulation of mesenchymal stem cells. Recently, it is reported that highly upregulated in liver cancer (HULC), with another lncRNA MALAT-1, accelerated liver cancer stem cell growth. The regulating role of MALAT-1 in mesenchymal stem cells has been investigated. However, the effects of HULC on the mesenchymal stem cells are unknown. In this study, we overexpressed HULC in mesenchymal stem cells derived from umbilical cord and analyzed the cell phenotypes, proliferation, apoptosis, migration, invasion and differentiation of mesenchymal stem cells. We found that overexpression of HULC significantly promotes cell proliferation through promoting cell division and inhibits cell apoptosis. HULC-overexpressed mesenchymal stem cells migrate and invade faster than control mesenchymal stem cells. HULC has no effect on phenotypes and differentiation of mesenchymal stem cells. Furthermore, we found that the expression of HULC in mesenchymal stem cells could be reduced by several inflammatory factors, including TNF-α, TGF-β1, and R848. Taken together, our data demonstrated that HULC has a vital role in the growth and function maintenance of mesenchymal stem cells without affecting differentiation. Impact statement Exploring the molecular mechanisms of growth and function in MSCs is the key to improve their clinical therapeutic effects. Currently, more and more evidence show that the long non-coding RNA (lncRNA) plays an important role in the growth, stemness and function of MSCs.Both HULC and MALAT1 are the earliest discovered LNCRNAs, which are closely related to tumor growth. All of them can promote the growth of liver cancer stem cells. Previously, we have studied the effects of MALAT1 on the growth and function of MSCs. In this study, we focused on the effects of HULC on MSCs. We elucidated the effects of HULC on the growth and differentiation of MSCs, and explored the relationship between inflammatory stimuli and HULC expression in MSCs. Our findings provide a new molecular target for the growth and clinical application of MSCs.


2017 ◽  
Vol 118 (9) ◽  
pp. 2780-2791 ◽  
Author(s):  
Xiujun Li ◽  
Yuxian Song ◽  
Fei Liu ◽  
Dan Liu ◽  
Huishuang Miao ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11251
Author(s):  
Zhaowei Teng ◽  
Yun Zhu ◽  
Qinggang Hao ◽  
Xiaochao Yu ◽  
Yirong Teng ◽  
...  

Background With aging, an imbalance in bone remodeling leading to increased bone resorption and decreased bone formation is thought to contribute to osteoporosis. Osteoblastic differentiation of bone marrow mesenchymal stem cells (BMMSCs) plays a vital role in the pathogenesis of osteoporosis. However, the detailed molecular mechanisms of osteoporosis remain incompletely understood. Given that long non-coding RNA taurine upregulated gene 1 (lnc TUG1) plays a critical role in the osteogenic differentiation, and microRNA-23b (miR-23b) as a putative sponge for lnc TUG1 has upregulated expression in osteoporosis. Therefore, this study investigated the roles of TUG1/miR-23b in osteoporotic pathology. Material and Methods TUG1 and miR-23b expression in the plasma of osteoporotic patients were evaluated by quantitative real-time PCR (qRT-PCR). The osteogenic differentiation in human BMMSCs was evaluated by qRT-PCR, western blot, Alizarin red staining after knockdown of TUG1 by small interfering RNA (siRNA) treatment. Results Decreased expression of TUG1 and increased expression of miR-23b evident in the plasma of patients with osteoporosis than in that of age- and sex-matched healthy controls. Additionally, increased miR-23b expression inhibited runt-related transcription factor 2 (RUNX2), osteocalcin, and osteopontin expression and reduced calcified nodule formation based on the results of qRT-PCR, western blot, and Alizarin Red S staining. Conclusion The study for the first time reported that silence of lncRNA TUG1 significantly suppressed the osteogenic differentiation of BMMSCs possibly by targeting the miR-23b/RUNX2 signaling pathway. This mechanism of TUG1/miR-23b/RUNX2 signaling within the osteogenic differentiation of BMMSCs might provide new insight for the development of lncRNA-directed diagnostic and therapeutic strategies for osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document