Growth of Apis mellifera (L.) colonies influenced by honey extraction frequencies

Author(s):  
Sumit Chaudhary ◽  
O.P. Chaudhary ◽  
Vadde Anoosha

Present re search was formulated to find out how honey extraction frequencies influence colony growth and honey production of European honey bee Apis mellifera colonies. Colonies were equalized in terms of food and brood before starting experiment and were subjected to three types of honey extraction frequencies namely single, two and regular/ farmer’s practices. Observations were recorded fortnightly throughout the honey flow season for two consecutive years (2014-16). As per present findings single extraction frequency have maximum mean honey area of 668.4 inches2 followed by twice extracted colonies (568.6) with significant difference and regular extraction (449.0) gives least honey. Honey peaks were observed during mid February (837.8-916.8 inches2) which remains significantly higher than honey areas in January and in March. As far as colony growth was concerned colonies with two extractions have high total brood areas of 436.4 inches2 and similar trend was followed in case of larvae, pupae and egg. Effect on pollen stores gave a different picture in contrast of other parameters here colonies with regular extraction were observed with significantly high pollen stores (99.3 inches2) than single extracted colonies (83.7 inches2). For high honey production single extraction was recommended and if colony multiplication was also an aim than twice extraction is best option as per findings.

1999 ◽  
Vol 131 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Lynn C. Westcott ◽  
Mark L. Winston

AbstractColonies of the honey bee, Apis mellifera Linnaeus, infested with the parasitic mites Acarapis woodi (Rennie) (Acari: Tarsonemidae) or Varroa jacobsoni Oudemans (Acari: Varroidae) require acaricidal treatment to control infestations that could affect colony growth and honey production. We investigated the effects of three acaricides, fluvalinate (formulated as Apistan®), formic acid, and menthol, on honey bee colony population growth, foraging activity, adult worker longevity, and honey production. Effects of in-hive treatments of Apistan® and formic acid were measured by examining colony weight gain, brood survival, sealed-brood area, emerged-bee weight, number of returning foragers, pollen-load weight, and worker longevity. These characteristics were not different between fluvalinate-treated colonies, formic-acid-treated colonies, and control colonies. Adult bee population, brood survival, number of returning foragers, and honey production did not vary among menthol-treated colonies, formic-acid-treated colonies, and control colonies. Sealed-brood area was lower in formic-acid-treated colonies than control colonies, but not different from menthol-treated colonies. Although not statistically significant, formic-acid-treated colonies experienced lower honey production than both menthol-treated and control colonies. Numbers of workers attending the queen in the retinue and queen behaviour patterns were not different after colonies were treated with formic acid.


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph P. Milone ◽  
David R. Tarpy

AbstractStressful conditions during development can have sub-lethal consequences on organisms aside from mortality. Using previously reported in-hive residues from commercial colonies, we examined how multi-pesticide exposure can influence honey bee (Apis mellifera) queen health. We reared queens in beeswax cups with or without a pesticide treatment within colonies exposed to treated or untreated pollen supplement. Following rearing, queens were open-mated and then placed into standard hive equipment in an “artificial swarm” to measure subsequent colony growth. Our treated wax had a pesticide Hazard Quotient comparable to the average in beeswax from commercial colonies, and it had no measurable effects on queen phenotype. Conversely, colonies exposed to pesticide-treated pollen had a reduced capacity for viable queen production, and among surviving queens from these colonies we observed lower sperm viability. We found no difference in queen mating number across treatments. Moreover, we measured lower brood viability in colonies later established by queens reared in treated-pollen colonies. Interestingly, royal jelly from colonies exposed to treated pollen contained negligible pesticide residues, suggesting the indirect social consequences of colony-level pesticide exposure on queen quality. These findings highlight how conditions during developmental can impact queens long into adulthood, and that colony-level pesticide exposure may do so indirectly.


Sociobiology ◽  
2020 ◽  
Vol 67 (1) ◽  
pp. 74
Author(s):  
Muhammad Shakeel ◽  
Hussain Ali ◽  
Sajjad Ahmad

Indigenous and exotic honey bee species were evaluated for their hygienic behavior in the climatic condition of Peshawar Khyber Pakhtunkhwa, Pakistan. Colonies of equal strength from indigenous (Apis cerana) and exotic (Apis mellifera) species were selected for the study. The same colonies were tested in two seasons. Sealed brood were killed with different methods i.e pin killed and freeze killed. The uncapping of cells and brood removal was recorded at different intervals. Significant differences were recorded between hygienic behavior of both species of honey bees. Apis cerana showed significantly superior hygienic behavior than Apis mellifera in both seasons. At different intervals in both species significant differences were recorded. A significant difference was recorded after 12 and 24 hours between the species in both seasons. No significant differences were recorded after 48hours in both species. From the study it is concluded that indigenous honey bee species has superior hygienic behavior than exotic species.


2021 ◽  
Vol 11 (20) ◽  
pp. 9756
Author(s):  
Abdulaziz S. Alqarni ◽  
Javaid Iqbal ◽  
Hael S. Raweh ◽  
Awad M. A. Hassan ◽  
Ayman A. Owayss

This study investigated the outgoing and pollen-gathering foraging activities of Apis mellifera jemenitica (AMJ) and Apis mellifera carnica (AMC) under a hot-arid environment in the presence of nectar-rich melliferous Ziziphus nummularia flora. The data revealed the differential effects of weather conditions and Z. nummularia flora on the foraging activities of the studied honey bee subspecies in the Rawdat-Khuraim oasis in central Saudi Arabia. Z. nummularia exhibited two flowering seasons, from June–July (season I) and August–October (season II), with a significantly higher mean flowering density observed during season II (404 flowers/m2) than during season I (235 flowers/m2). AMJ showed significantly higher foraging activities (outgoing and pollen-gathering) than AMC (exotic bees) during all months in each flowering season. The mean outgoing and pollen-gathering foraging rates of AMJ (32.40 ± 0.67 and 4.88 ± 0.40 workers/colony/min, respectively) were significantly higher than those of AMC (15.93 ± 1.20 and 2.39 ± 0.23 workers/colony/min, respectively). The outgoing and pollen-gathering foraging activities of the two subspecies fluctuated throughout the different times of day. Foraging activities were considerably high at sunrise (SR) and low at noon (N) during both flowering seasons. We also observed seasonal variations in the foraging activities of both bee subspecies. The mean foraging activities (outgoing and pollen-gathering) were slightly higher in season I (27.43 ± 1.21 and 4.46 ± 0.45 workers/colony/min, respectively) than in season II (21.71 ± 0.86 and 3.02 ± 0.22 workers/colony/min, respectively). The thermal window analysis revealed a significant difference between the flight activities (bees exiting and returning to the nest throughout the day) of AMJ and AMC; AMJ had a higher temperature threshold than AMC. The outgoing and pollen-gathering foraging activities within each bee subspecies were positively correlated. The present study can help researchers understand the performances of honeybees and the association of their performances with weather and nectar-rich flora conditions.


2012 ◽  
Vol 60 (1) ◽  
pp. 65-73 ◽  
Author(s):  
J. Rangel ◽  
J. J. Keller ◽  
D. R. Tarpy

Sign in / Sign up

Export Citation Format

Share Document