scholarly journals Hepatitis C Virus E2—Host Cell Receptor, HSPA5, Binding Site Prediction

Author(s):  
Alaa Elgohary ◽  
Abdo Elfiky

Hepatitis C Virus (HCV) is the main causative factor for liver cirrhosis and the development of liver cancer, with a confirmed ~ 180 million infections worldwide. E2 is an HCV structural protein responsible for virus entry to the host cell. Heat Shock Protein A5 (HSPA5), also termed BiP and GRP78, is the master regulator of the unfolded protein response mechanism, where it mainly localizes in the lumen of the Endoplasmic Reticulum (ER) in normal conditions. Under the stress of HCV infection or carcinogenesis, HSPA5 is upregulated. Consequently, HSPA5 escapes the ER retention localization and translocates to the cytoplasm and plasma membrane. Pep42, a cyclic peptide that was reported to target explicitly cell-surface HSPA5 in vivo. Owing to the high sequence and structural conservation between the C554-C566 region of HCV E2 and the Pep42, then we propose that the HCV E2 C554-C566 region could be the recognition site. The motivation of this work is to predict the possible binding mode between HCV E2 and HSPA5 by implementing molecular docking to test such proposed binding. Docking results reveal the high potent binding of the HCV E2 C554-C566 region to HSPA5 substrate-binding domain β (SBDβ). Moreover, the full-length HCV E2 also exhibits high binding potency to HSPA5 SBDβ. Defining the binding mode between HCV E2 and HSPA5 is of significance, so one can interfere with such binding and reducing the viral infection.

Hepatology ◽  
2015 ◽  
Vol 62 (3) ◽  
pp. 726-736 ◽  
Author(s):  
Rajiv G. Tawar ◽  
Che C. Colpitts ◽  
Jörg Timm ◽  
Tanja Fehm ◽  
Michael Roggendorf ◽  
...  

2006 ◽  
Vol 44 (08) ◽  
Author(s):  
P Hilgard ◽  
R Bröring ◽  
M Trippler ◽  
S Viazov ◽  
G Gerken ◽  
...  

2004 ◽  
Vol 116 (33) ◽  
pp. 4406-4411 ◽  
Author(s):  
Steven R. LaPlante ◽  
Araz Jakalian ◽  
Norman Aubry ◽  
Yves Bousquet ◽  
Jean-Marie Ferland ◽  
...  

1998 ◽  
Vol 18 (9) ◽  
pp. 5208-5218 ◽  
Author(s):  
Michael Gale ◽  
Collin M. Blakely ◽  
Bart Kwieciszewski ◽  
Seng-Lai Tan ◽  
Michelle Dossett ◽  
...  

ABSTRACT The PKR protein kinase is a critical component of the cellular antiviral and antiproliferative responses induced by interferons. Recent evidence indicates that the nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) can repress PKR function in vivo, possibly allowing HCV to escape the antiviral effects of interferon. NS5A presents a unique tool by which to study the molecular mechanisms of PKR regulation in that mutations within a region of NS5A, termed the interferon sensitivity-determining region (ISDR), are associated with sensitivity of HCV to the antiviral effects of interferon. In this study, we investigated the mechanisms of NS5A-mediated PKR regulation and the effect of ISDR mutations on this regulatory process. We observed that the NS5A ISDR, though necessary, was not sufficient for PKR interactions; we found that an additional 26 amino acids (aa) carboxyl to the ISDR were required for NS5A-PKR complex formation. Conversely, we localized NS5A binding to within PKR aa 244 to 296, recently recognized as a PKR dimerization domain. Consistent with this observation, we found that NS5A from interferon-resistant HCV genotype 1b disrupted kinase dimerization in vivo. NS5A-mediated disruption of PKR dimerization resulted in repression of PKR function and inhibition of PKR-mediated eIF-2α phosphorylation. Introduction of multiple ISDR mutations abrogated the ability of NS5A to bind to PKR in mammalian cells and to inhibit PKR in a yeast functional assay. These results indicate that mutations within the PKR-binding region of NS5A, including those within the ISDR, can disrupt the NS5A-PKR interaction, possibly rendering HCV sensitive to the antiviral effects of interferon. We propose a model of PKR regulation by NS5A which may have implications for therapeutic strategies against HCV.


2007 ◽  
Vol 39 (10) ◽  
pp. 751-762 ◽  
Author(s):  
Qiongqiong HE ◽  
Ruixue CHENG ◽  
Zhuchu CHEN ◽  
Xuxian XIAO ◽  
Zhiqiang XIAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document