scholarly journals Decrease of Carbonation, Sulfate and Chloride Ingress due to the Substitution of Cement by 10% of Non Calcined Bentonite

Author(s):  
Carmen Andrade ◽  
Ana Martínez-Serrano ◽  
Miguel Ángel Sanjuán ◽  
José Antonio Tenorio Ríos

Clinker production is being reduced worldwide in response to the need to drastically lower greenhouse gas emissions. The trend began in the nineteen seventies with the advent of mineral additions to replace clinker. Blast furnace slag and fly ash, industrial by-products that were being stockpiled in waste heaps at the time, have not commonly been included in cements. Supply of these additions is no longer guaranteed, however, due to restrained activity in the source industries for the same reasons as in clinker production. The search is consequently on for other additions that may lower pollutant gas emissions without altering cement performance. In this research bentonite, a very common clay, was used as such an addition directly, with no need for pre-calcination, an still novel approach that has gone little explored to date for reinforced concrete with structural applications. The results of the mechanical strength and chemical resistance (to sulfates, carbonation and chlorides) tests conducted are promising. The carbonation findings proved to be of particular interest, for that is the area where cement with mineral additions tend to be least effective. In the bentonite-bearing material analysed here, however, carbonation resistance was found to be low as or lower than observed in plain Portland cement.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1300
Author(s):  
Carmen Andrade ◽  
Ana Martínez-Serrano ◽  
Miguel Ángel Sanjuán ◽  
José Antonio Tenorio Ríos

The Portland cement industry is presently deemed to account for around 7.4% of the carbon dioxide emitted annually worldwide. Clinker production is being reduced worldwide in response to the need to drastically lower greenhouse gas emissions. The trend began in the nineteen seventies with the advent of mineral additions to replace clinker. Blast furnace slag and fly ash, industrial by-products that were being stockpiled in waste heaps at the time, have not commonly been included in cements. Supply of these additions is no longer guaranteed, however, due to restrained activity in the source industries for the same reasons as in clinker production. The search is consequently on for other additions that may lower pollutant gas emissions without altering cement performance. In this study, bentonite, a very common clay, was used as such an addition directly, with no need for precalcination, a still novel approach that has been scantly explored to date for reinforced structural concrete with structural applications. The results of the mechanical strength and chemical resistance (to sulfates, carbonation and chlorides) tests conducted are promising. The carbonation findings proved to be of particular interest, for that is the area where cement with mineral additions tends to be least effective. In the bentonite-bearing material analysed here, however, carbonation resistance was found to be as low as or lower than that observed in plain Portland cement.


2013 ◽  
Vol 723 ◽  
pp. 609-616
Author(s):  
Wei Chien Wang ◽  
Chih Chien Liu ◽  
Chau Lee

The furnace slag are the by-products of the steel industry, the main ingredients are the oxide of calcium, alumina and magnesium, and some silica. Slag used as concrete aggregate could cause the problem of the volume expansion of concrete. The expansion problem may be produced by ASR or free calcium oxide and magnesium oxide in slag. This research stabilizing the non-ASR reactive slag using steam treatment analyzes the effectiveness of steam treating technique inhibiting the expansive problem for slag used in concrete. And this paper also discusses the effect of the steam treating time on the performance of inhibiting the expansive problem.


2018 ◽  
Vol 1 (1) ◽  
pp. 283-292
Author(s):  
Walid Fouad Edris ◽  
Safwat Abdelkader ◽  
Encarnacion Reyes Pozo ◽  
Amparo Moragues Terrades

In this work we have designed an experimental campaign with four different dosages of concrete to study the influence of the principal additions used in marine environments. The effect of material composition [Sulfate Resistant Portland Cement (SRPC), Blast Furnace Slag Portland Cement (BFSPC), Silica Fume (SF) and Fly Ash (FA) with four different mix designs] was performed by means of differential thermal analysis (DTA), mercury intrusion porosimetry (MIP), gas permeability, chloride diffusion and mechanical properties of concrete. In order to simulate the aggressiveness of the marine environment the concretes were immersed in a sodium chloride solution with a concentration of 1 molar during different times of 182, 365 and 546 days. According to the results obtained, the SRPC and SRPC+FA samples suffered the highest rise in permeability, porosity and chloride diffusion, and the greatest loss in compressive strength


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Branislava M. Lekić ◽  
Dana D. Marković ◽  
Vladana N. Rajaković-Ognjanović ◽  
Aleksandar R. Đukić ◽  
Ljubinka V. Rajaković

In this study, removal of arsenic ions using two industrial by-products as adsorbents is represented. Removal of As(III) and As(V) from water was carried out with industrial by-products: residual from the groundwater treatment process, iron-manganese oxide coated sand (IMOCS), and blast furnace slag from steel production (BFS), both inexpensive and locally available. In addition, the BFS was modified in order to minimise its deteriorating impact on the initial water quality. Kinetic and equilibrium studies were carried out using batch and fixed-bed column adsorption techniques under the conditions that are likely to occur in real water treatment systems. To evaluate the application for real groundwater treatment, the capacities of the selected materials were further compared to those exhibited by commercial sorbents, which were examined under the same experimental conditions. IMOCS was found to be a good and inexpensive sorbent for arsenic, while BFS and modified slag showed the highest affinity towards arsenic. All examined waste materials exhibited better sorption performances for As(V). The maximum sorption capacity in the batch reactor was obtained for blast furnace slag, 4040 μgAs(V)/g.


2020 ◽  
Vol 10 (11) ◽  
pp. 3940
Author(s):  
Vera Correia ◽  
João Gomes Ferreira ◽  
Luping Tang ◽  
Anders Lindvall

Ground Granulated Blast-furnace Slag (GGBS) can partially replace cement in concrete to improve certain properties. However, some concerns regarding its performance have been raised. This research aimed at investigating the properties of concrete with GGBS, with special focus on its frost scaling and chloride ingress resistance. Concretes with different amounts of GGBS, different efficiency factors, and different air contents have been tested. The effects of other factors, namely the curing temperature, the use of superplasticizer and carbonation, have also been investigated. The results showed that the frost resistance generally decreases with the increase of the amount of GGBS. However, this research showed that it is possible to produce frost resistant concrete with up to 50% of GGBS by changing some properties of the mix (such as increasing the air content). The results also showed a significant improvement of the chloride ingress resistance for concrete with high additions of GGBS.


2019 ◽  
Vol 11 (19) ◽  
pp. 5145 ◽  
Author(s):  
Al-Mansour ◽  
Chow ◽  
Feo ◽  
Penna ◽  
Lau

The popularity of concrete has been accompanied with dreadful consumptions that have led to huge carbon footprint in our environment. The exhaustion of natural resources is not yet the problem, but also the energy that is needed for the fabrication of the natural materials, in which this process releases significant amount of carbon dioxide (CO2) emissions into the air. Ordinary Portland Cement (OPC) and natural aggregates, which are the key constituents of concrete, are suggested to be recycled or substituted in order to address the sustainability concern. Here, by-products have been targeted to reduce the carbon footprint, including, but not limited to, fly ash, rice husk ash, silica fume, recycled coarse aggregates, ground granular blast-furnace slag, waste glass, and plastic. Moreover, advanced approaches with an emphasis on sustainability are highlighted, which include the enhancement of the hydration process in cement (calcium-silicate hydrate) and the development of new materials that can be used in concrete (e.g. carbon nanotube). This review paper provides a comprehensive discussion upon the utilization of the reviewed materials, as well as the challenges and the knowledge gaps in producing green and sustainable concrete.


2020 ◽  
Vol 207 ◽  
pp. 112552 ◽  
Author(s):  
Hongyi Huang ◽  
Jingyong Liu ◽  
Hui Liu ◽  
Fatih Evrendilek ◽  
Musa Buyukada

Sign in / Sign up

Export Citation Format

Share Document