scholarly journals Screening of Osteoarthritis-Related Genes and Function Determination Based on Bioinformatics Tools

Author(s):  
Zheng Fu ◽  
Weiqian Jiang ◽  
Wenlong Yan ◽  
Fei Xie ◽  
Yu Chen ◽  
...  

Abstract Background:Osteoarthritis(OA), commonly seen in the middle-aged and elderly population, imposes a heavy burden on patients from the clinical, humanistic and economic aspects. Our work aims at the discovery of early diagnostic and therapeutic targets for OA and new candidate biomarkers for experimental studies on OA via bioinformatics analysis.Methods:The dataset GSE114007 was downloaded from GEO to identify differentially expressed genes(DEGs) in R using 3 different algorithms. Overlapping DEGs were subject to GO and KEGG pathway enrichment analysis and functional annotation. Following the identification of DEGs, a protein-protein interaction(PPI) network was established and imported into Cytoscape to screen for hubgenes. The expression of each hubgene was verified in two other datasets and create miRNA-mRNA regulatory networks.Results:174 upregulated genes and 117 downregulated genes were identified among the overlapping DEGs. According to the results of GO enrichment analysis,MF enrichment was basically found in ECM degradation and collagen breakdown; enrichment was also present in the development, ossification, and differentiation of cells. The KEGG pathway enrichment analysis suggested significant enrichment in such pathways as PI3K-AKT, P53, TNF, and FoxO. 23 hubgenes were obtained from the PPI network, and 11 genes were identified as DEGs through verification. 8 genes were used for the establishment of miRNA-mRNA regulatory networks.Conclusion:OA-related genes, proteins, pathways and miRNAs that were identified through bioinformatics analysis may provide a reference for the discovery of early diagnostic and therapeutic targets for OA, as well as candidate biomarkers for experimental studies on OA.

2020 ◽  
Author(s):  
Liancheng Zhu ◽  
Mingzi Tan ◽  
Haoya Xu ◽  
Bei Lin

Abstract Background: Human epididymis protein 4 (HE4) is a novel serum biomarker for diagnosing epithelial ovarian cancer (EOC) with high specificity and sensitivity, compared with CA125. Recent studies have focused on the roles of HE4 in promoting carcinogenesis and chemoresistance in EOC; however, the molecular mechanisms underlying its action remain poorly understood. This study was conducted to determine the molecular mechanisms underlying HE4 stimulation and identifying key genes and pathways mediating carcinogenesis in EOC by microarray and bioinformatics analysis.Methods: We established a stable HE4-silenced ES-2 ovarian cancer cell line labeled as “S”; the S cells were stimulated with the active HE4 protein, yielding cells labeled as “S4”. Human whole-genome microarray analysis was used to identify differentially expressed genes (DEGs) in S4 and S cells. The “clusterProfiler” package in R, DAVID, Metascape, and Gene Set Enrichment Analysis were used to perform gene ontology (GO) and pathway enrichment analysis, and cBioPortal was used for WFDC2 coexpression analysis. The GEO dataset (GSE51088) and quantitative real-time polymerase chain reaction were used to validate the results. Protein–protein interaction (PPI) network and modular analyses were performed using Metascape and Cytoscape, respectively. Results: In total, 713 DEGs were identified (164 upregulated and 549 downregulated) and further analyzed by GO, pathway enrichment, and PPI analyses. We found that the MAPK pathway accounted for a significant large number of the enriched terms. WFDC2 coexpression analysis revealed ten WFDC2-coexpressed genes (TMEM220A, SEC23A, FRMD6, PMP22, APBB2, DNAJB4, ERLIN1, ZEB1, RAB6B, and PLEKHF1) whose expression levels were dramatically altered in S4 cells; this was validated using the GSE51088 dataset. Kaplan–Meier survival statistics revealed that all 10 target genes were clinically significant. Finally, in the PPI network, 16 hub genes and 8 molecular complex detections (MCODEs) were identified; the seeds of the five most significant MCODEs were subjected to GO and KEGG enrichment analyses and their clinical relevance was evaluated.Conclusions: Through microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network following active HE4 stimulation in EOC cells. We proposed several possible mechanisms underlying the action of HE4 and identified the therapeutic and prognostic targets of HE4 in EOC.


2020 ◽  
Author(s):  
Zhiqiang Liu ◽  
Bolong Wang

Abstract Background: Jianghuang (JH) is a popular ingredient in blood-regulating traditional Chinese Medicine (TCM) that could be effective for the treatment of various diseases. We demonstrate the compatibility laws and system pharmacological mechanisms of the key formula containing JH by leveraging data mining of bioinformatics databases.Material/Methods: The compatibility laws of blood-regulating formulae containing JH from the Chinese Traditional Medicine Formula Dictionary were analyzed using a generalized rule induction (GRI) algorithm implemented. The putative target gene and miRNA were retrieved via a combination of the Arrowsmith knowledge discovery tool and FunRich 3.1.3. System pharmacological mechanisms are traced by their protein-protein interaction (PPI) network, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted using Uniprot, the Human Protein Atlas (HPA), STRING 11.0, and KOBAS 3.0.Results: We found that the JH-CX-DG formula (Ligusticum chuanxiong-Angelica sinensis) could represent a key formula containing JH in blood-regulating TCM formulae. The JH-CX-DG formula was observed to directly target AKT, TLR4, caspase-3, PI3K, mTOR, p38 MAPK, VEGF, iNOS, Nrf2, BDNF, NF-κB, Bcl-2, and Bax 13 targets and regulate targets through 13 miRNA. The PPI network and KEGG pathway enrichment analysis showed that the JH-CX-DG formula possess potential pharmacological effects including anti-inflammatory, improving microcirculation, and anti-tumor through the regulation of multiple pathways including PI3K/Akt, MAPK, Toll-like receptor, T cell receptor, EGFR, VEGFR, Apoptosis, HIF-1 (p < 0.05).Conclusion: The JH-CX-DG formula can exert beneficial pharmacological effects through multi-target and multi-pathway interactions. It can be effectively administered for the treatment of inflammatory diseases, microcirculation disorders, cardiovascular disease, and cancer. We found a new effective drug formula through analyzing the compatibility law and systemic pharmacological mechanism of JH. Our study provides a theoretical basis and directions for subsequent research on the JH-CX-DG formula.


2021 ◽  
Author(s):  
XueZhen LIANG ◽  
Di LUO ◽  
Yan-Rong CHEN ◽  
Jia-Cheng LI ◽  
Bo-Zhao YAN ◽  
...  

Abstract Purpose: Steroid-induced osteonecrosis of the femoral head (SONFH) was a refractory orthopedic hip joint disease in the young and middle-aged people. Previous experimental studies had shown that autophagy might be involved in the pathological process of SONFH, but the pathogenesis of autophagy in SONFH remained unclear. We aim to identify and validate the key potential autophagy-related genes of SONFH to further illustrate the mechanism of autophagy in SONFH through bioinformatics analysis. Methods: The mRNA expression profile dataset GSE123568 was download from Gene Expression Omnibus (GEO) database, including 10 non-SONFH (following steroid administration) samples and 30 SONFH samples. The autophagy-related genes were obtained from the Human Autophagy Database (HADb). The autophagy-related genes of SONFH were screened by intersecting GSE123568 dataset with autophagy genes. The differentially expressed autophagy-related genes of SONFH were identified by R software. Besides, the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted for the differentially expressed autophagy-related genes of SONFH by R software. Then, the correlation analysis between the expression levels of differentially expressed autophagy-related genes of SONFH was confirmed by R software. Moreover, the protein–protein interaction (PPI) network were analyzed by the Search Tool for the Retrieval of Interacting Genes (STRING), and the significant gene cluster modules were identified by the MCODE Cytoscape plugin, and hub genes of differentially expressed autophagy-related genes of SONFH were screened by the CytoHubba Cytoscape plugin. Finally, the expression levels of hub genes of differentially expressed autophagy-related genes of SONFH was validated in hip articular cartilage specimens from necrosis femur head (NFH) by GSE74089 dataset. Results: A total of 34 differentially expressed autophagy-related genes were identified between the peripheral blood of SONFH samples and non-SONFH Samples based on the defined criteria, including 25 up-regulated genes and 9 down-regulated genes. The GO and KEGG pathway enrichment analysis revealed that these 34 differentially expressed autophagy-related genes of SONFH were concentrated in death domain receptors, FOXO signaling pathway and apoptosis. The correlation analysis revealed a significant correlation among the 34 differentially expressed autophagy-related genes of SONFH. The PPI results demonstrated that the 34 differentially expressed autophagy-related genes interacted with each other. There were 10 hub genes identified by the MCC algorithms of Cytohubba. The results of GSE74089 dataset showed TNFSF10, PTEN and CFLAR were significantly upregulated while BCL2L1 were significantly downregulated in the hip cartilage specimens, which were consistent with the GSE123568 dataset. Conclusions: There were 34 potential autophagy-related genes of SONFH identified using bioinformatics analysis. TNFSF10, PTEN, CFLAR and BCL2L1 might serve as potential drug targets and biomarkers by regulating autophagy. These results would expand new insights into the autophagy-related understanding of SONFH and might be useful in the diagnosis and prognosis of SONFH.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guoxiu Zu ◽  
Keyun Sun ◽  
Ling Li ◽  
Xiuli Zu ◽  
Tao Han ◽  
...  

AbstractQuercetin has demonstrated antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic activities, suggesting therapeutic potential against type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). In this study, potential molecular targets of quercetin were first identified using the Swiss Target Prediction platform and pathogenic targets of T2DM and AD were identified using online Mendelian inheritance in man (OMIM), DisGeNET, TTD, DrugBank, and GeneCards databases. The 95 targets shared among quercetin, T2DM, and AD were used to establish a protein–protein interaction (PPI) network, top 25 core genes, and protein functional modules using MCODE. Metascape was then used for gene ontology and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. A protein functional module with best score was obtained from the PPI network using CytoHubba, and 6 high-probability quercetin targets (AKT1, JUN, MAPK, TNF, VEGFA, and EGFR) were confirmed by docking simulations. Molecular dynamics simulation was carried out according to the molecular docking results. KEGG pathway enrichment analysis suggested that the major shared mechanisms for T2DM and AD include “AGE-RAGE signaling pathway in diabetic complications,” “pathways in cancer,” and “MAPK signaling pathway” (the key pathway). We speculate that quercetin may have therapeutic applications in T2DM and AD by targeting MAPK signaling, providing a theoretical foundation for future clinical research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Farhadian ◽  
Seyed Abbas Rafat ◽  
Bahman Panahi ◽  
Christopher Mayack

AbstractThe exponential growth in knowledge has resulted in a better understanding of the lactation process in a wide variety of animals. However, the underlying genetic mechanisms are not yet clearly known. In order to identify the mechanisms involved in the lactation process, various mehods, including meta-analysis, weighted gene co-express network analysis (WGCNA), hub genes identification, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment at before peak (BP), peak (P), and after peak (AP) stages of the lactation processes have been employed. A total of 104, 85, and 26 differentially expressed genes were identified based on PB vs. P, BP vs. AP, and P vs. AP comparisons, respectively. GO and KEGG pathway enrichment analysis revealed that DEGs were significantly enriched in the “ubiquitin-dependent ERAD” and the “chaperone cofactor-dependent protein refolding” in BP vs. P and P vs. P, respectively. WGCNA identified five significant functional modules related to the lactation process. Moreover, GJA1, AP2A2, and NPAS3 were defined as hub genes in the identified modules, highlighting the importance of their regulatory impacts on the lactation process. The findings of this study provide new insights into the complex regulatory networks of the lactation process at three distinct stages, while suggesting several candidate genes that may be useful for future animal breeding programs. Furthermore, this study supports the notion that in combination with a meta-analysis, the WGCNA represents an opportunity to achieve a higher resolution analysis that can better predict the most important functional genes that might provide a more robust bio-signature for phenotypic traits, thus providing more suitable biomarker candidates for future studies.


2021 ◽  
Author(s):  
Guoxiu Zu ◽  
Keyun Sun ◽  
Ling Li ◽  
Xiuli Zu ◽  
Tao Han ◽  
...  

Abstract Quercetin has demonstrated antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic activities, suggesting therapeutic potential against type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). In this study, potential molecular targets of quercetin were first identified using the Swiss Target Prediction platform and pathogenic targets of T2DM and AD were identified using Online Mendelian Inheritance in Man (OMIM), DisGeNET, TTD, DrugBank, and GeneCards databases. The 95 targets shared among quercetin, T2DM, and AD were used to establish a protein–protein interaction (PPI) network, top 25 core genes, and protein functional modules using MCODE. Metascape was then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A protein functional module with best score was obtained from the PPI network using CytoHubba, and 6 high-probability quercetin targets (AKT1, JUN, MAPK, TNF, VEGFA, and EGFR) were confirmed by docking simulations. KEGG pathway enrichment analysis suggested that the major shared mechanisms for T2DM and AD include “AGE-RAGE signaling pathway in diabetic complications,” “pathways in cancer,” and “MAPK signaling pathway” (the key pathway). We speculate that quercetin may have therapeutic applications in T2DM and AD by targeting MAPK signaling, providing a theoretical foundation for future clinical research.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Tianye Lin ◽  
Weijian Chen ◽  
Peng Yang ◽  
Ziqi Li ◽  
Qiushi Wei ◽  
...  

Abstract Background Steroid-induced osteonecrosis of the femoral head (ONFH) is a common hip joint disease and is difficult to be diagnosed early. At present, the pathogenesis of steroid-induced ONFH remains unclear, and recognized and effective diagnostic biomarkers are deficient. The present study aimed to identify potentially important genes and signaling pathways involved in steroid-induced ONFH and investigate their molecular mechanisms. Methods Microarray data sets GSE123568 (peripheral blood) and GSE74089 (cartilage) were obtained from the Gene Expression Omnibus database, including 34 ONFH samples and 14 control samples. Morpheus software and Venn diagram were used to identify DEGs and co-expressed DEGs, respectively. Besides, we conducted Kyoto Encyclopedia of Genome (KEGG) and gene ontology (GO) pathway enrichment analysis. We construct a protein-protein interaction (PPI) network through GEO2R and used cytoHubba to divide the PPI network into multiple sub-networks. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the bioinformatics analysis results. Results A total of 118 intersecting DEGs were obtained between the peripheral blood and cartilage samples, including 40 upregulated genes and 78 downregulated genes. Then, GO and KEGG pathway enrichment analysis revealed that upregulated DEGs focused on the signaling pathways related to staphylococcus aureus infection, leishmaniasis, antigen processing, and presentation, as well as asthma and graft-versus-host disease. Downregulated genes were concentrated in the FoxO signaling pathway, AMPK signaling pathway, signaling pathway regulating stem cell pluripotency, and mTOR signaling pathway. Some hub genes with high interactions such as CXCR1, FPR1, MAPK1, FOXO3, FPR2, CXCR2, and TYROBP were identified in the PPI network. The results of qRT-PCR demonstrated that CXCR1, FPR1, and TYROBP were upregulated while MAPK1 was downregulated in peripheral blood of steroid-induced ONFH patients. This was consistent with the bioinformatics analysis. Conclusions The present study would provide novel insight into the genes and associated pathways involved in steroid-induced ONFH. CXCR1, FPR1, TYROBP, and MAPK1 may be used as potential drug targets and biomarkers for the diagnosis and prognosis of steroid-induced ONFH.


2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


Author(s):  
Moumita Mukherjee ◽  
Srikanta Goswami

RNA-binding proteins (RBPs) play a significant role in multiple cellular processes with their deregulations strongly associated with cancer. However, there are not adequate evidences regarding global alteration and functions of RBPs in pancreatic cancer, interrogated in a systematic manner. In this study, we have prepared an exhaustive list of RBPs from multiple sources, downloaded gene expression microarray data from a total of 241 pancreatic tumors and 124 normal pancreatic tissues, performed a meta-analysis, and obtained differentially expressed RBPs (DE-RBPs) using the Limma package of R Bioconductor. The results were validated in microarray datasets and the Cancer Genome Atlas (TCGA) RNA sequencing dataset for pancreatic adenocarcinoma (PAAD). Pathway enrichment analysis was performed using DE-RBPs, and we also constructed the protein–protein interaction (PPI) network to detect key modules and hub-RBPs. Coding and noncoding targets for top altered and hub RBPs were identified, and altered pathways modulated by these targets were also investigated. Our meta-analysis identified 45 upregulated and 15 downregulated RBPs as differentially expressed in pancreatic cancer, and pathway enrichment analysis demonstrated their important contribution in tumor development. As a result of PPI network analysis, 26 hub RBPs were detected and coding and noncoding targets for all these RBPs were categorized. Functional exploration characterized the pathways related to epithelial-to-mesenchymal transition (EMT), cell migration, and metastasis to emerge as major pathways interfered by the targets of these RBPs. Our study identified a unique meta-signature of 26 hub-RBPs to primarily modulate pancreatic tumor cell migration and metastasis in pancreatic cancer. IGF2BP3, ISG20, NIP7, PRDX1, RCC2, RUVBL1, SNRPD1, PAIP2B, and SIDT2 were found to play the most prominent role in the regulation of EMT in the process. The findings not only contribute to understand the biology of RBPs in pancreatic cancer but also to evaluate their candidature as possible therapeutic targets.


2020 ◽  
Author(s):  
Liancheng Zhu ◽  
Mingzi Tan ◽  
Haoya Xu ◽  
Bei Lin

Abstract Background.Human Epididymis Protein 4 (HE4) is a novel serum biomarker for diagnosis of epithelial ovarian cancer (EOC) with high specificity and sensitivity compared with CA125, and the increasing researches have been carried out on its roles in promoting carcinogenesis and chemoresistance in EOC in recent years, however, its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of HE4 stimulation and to identify the key genes and pathways mediating carcinogenesis in EOC using microarray and bioinformatics analysis.Methods. We established a stable HE4-silence ES-2 ovarian cancer cell line labeled as “S”, and its active HE4 protein stimulated cells labeled as “S4”. Human whole genome microarray analysis was used to identify deferentially expressed genes (DEGs) from triplicate samples of S4 and S cells. “clusterProfiler” package in R, DAVID, Metascape, and Gene Set Enrichment Analysis (GSEA) were used to perform gene ontology (GO) and pathway enrichment analysis, and cBioPortal for WFDC2 coexpression analysis. GEO dataset (GSE51088) and quantitative real-time polymerase chain reaction (qRT-PCR) was applied for validation. The protein–protein interaction (PPI) network and modular analyses were performed using Metascape and Cytoscape. Results.In total, 713 DEGs were found (164 up regulated and 549 down regulated) and further analyzed by GO, pathway enrichment and PPI analyses. We found that MAPK pathway accounted for a significant portion of the enriched terms. WFDC2 coexpression analysis revealed ten WFDC2 coexpressed genes (TMEM220A, SEC23A, FRMD6, PMP22, APBB2, DNAJB4, ERLIN1, ZEB1, RAB6B, and PLEKHF1) that were also dramatically changed in S4 cells and validated by dataset GSE51088. Kaplan–Meier survival statistics revealed clinical significance for all of the 10 target genes. Finally, PPI was constructed, sixteen hub genes and eight molecular complex detections (MCODEs) were identified, the seeds of five most significant MCODEs were subjected to GO and KEGG enrichment analysis and their clinical significance was evaluated.Conclusions.By applying microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of active HE4 stimulation in EOC cells. We offered several possible mechanisms and identified therapeutic and prognostic targets of HE4 in EOC.


Sign in / Sign up

Export Citation Format

Share Document