scholarly journals A Necroptosis-Related Gene Signature for Predicting Prognosis, Immune Landscape, and Therapy Sensitivity in Hepatocellular Carcinoma

Author(s):  
Junliang Chen ◽  
Huaitao Wang ◽  
Lei Zhou ◽  
Zhihao Liu ◽  
Hui Chen ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) remains a growing threat to global health. Necroptosis is a newly discovered regulated cell necrosis that plays a vital role in cancer development. Thus, we conducted this study to develop a predictive signature based on necroptosis-related genes.Methods: The tumor samples in The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) cohort were subtyped using the consensus clustering algorithm. Univariate Cox regression and LASSO-Cox analysis were performed to construct a gene signature model from differentially expressed genes between tumor clusters. Then we integrated TNM stage and the prognostic model to build a nomogram. The gene signature and the nomogram were externally validated in the GSE14520 cohort from the gene expression omnibus (GEO) and LIRP-JP cohort from the International Cancer Genome Consortium (ICGC). Predictive performance evaluation was conducted using Kaplan-Meier plot, time-dependent receiver operating characteristic curve, principal components analysis, concordance index, and decision curve analysis. The tumor microenvironment was estimated using seven published methods. Finally, we also predicted the drug responses to immunotherapy, conventional chemotherapy and molecular-targeted therapy using two algorithms and two datasets. Results: We identified two necroptosis-related clusters and a ten-gene signature (MTMR2, CDCA8, S100A9, ANXA10, G6PD, SLC1A5, SLC2A1, SPP1, PLOD2, and MMP1). The gene signature and the nomogram had good predictive ability in TCGA, ICGC, and GEO cohorts. The risk score was positively associated with the degree of necroptosis and immune infiltration (especially immunosuppressive cells). The high-risk group could benefit more from immunotherapy. Chemotherapy and molecular-targeted therapy should be adapted to the molecular profiles of each patient.Conclusion: The necroptosis-related gene signature provides reliable evidence for prognosis prediction, comprehensive treatment, and new therapeutic targets for HCC patients. The nomogram can further improve predictive accuracy.

2021 ◽  
Vol 7 ◽  
Author(s):  
Enfa Zhao ◽  
Shimin Chen ◽  
Ying Dang

Objective: The purpose of this study was to develop and validate a novel immune checkpoint–related gene signature for prediction of overall survival (OS) in hepatocellular carcinoma (HCC).Methods: mRNA expression profiles and clinical follow-up information were obtained in the International Cancer Genome Consortium database. An external dataset from The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma database was used to validate the results. The univariate and multivariate Cox regression analyses were performed based on the differentially expressed genes. We generated a four-mRNA signature to predict patient survival. Furthermore, the reliability and validity were validated in TCGA cohort. An integrated bioinformatics approach was performed to evaluate its diagnostic and prognostic value.Results: A four-gene (epidermal growth factor, mutated in colorectal cancer, mitogen-activated protein kinase kinase 2, and NRAS proto-oncogene, GTPase) signature was built to classify patients into two risk groups using a risk score with different OS in two cohorts (all P < 0.0001). Multivariate regression analysis demonstrated the signature was an independent predictor of HCC. Furthermore, the signature presented an excellent diagnostic power in differentiating HCC and adjacent tissues. Immune cell infiltration analysis revealed that the signature was associated with a number of immune cell subtypes.Conclusion: We identified a four–immune checkpoint–related gene signature as a robust biomarker with great potential for clinical application in risk stratification and OS prediction in HCC patients and could be a potential indicator of immunotherapy in HCC. The diagnostic signature had been validated to accurately distinguish HCC from adjacent tissues.


2020 ◽  
Author(s):  
Li Wang ◽  
Na Zhou ◽  
Jialin Qu ◽  
Man Jiang ◽  
Xiaochun Zhang

Abstract Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related morbidity and mortality among all human cancers. Studies have demonstrated that RNA binding proteins (RBPs) involved in the biological process of cancers including hepatocellular cancer. In this study, we aim to identify clinical value of RNA binding proteins for hepatocellular carcinoma.Methods: We analyses the data of HCC that downloaded from the Cancer Genome Atlas (TCGA) database and determined the differently expressed of RBPs between cancer and normal tissues. We further elucidate the function of RBPs by utilized Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene signature of SMG5, EZH2, FBLL1, ZNF239, IGF2BP3 were generated by performed the univariate and multivariate Cox regression and LASSO regression analysis. CIBERSORT analysis was used to evaluation of tumor-infiltrating immune cells in different group. We built and verify a prognosis nomogram base on RBPs-related genes. Gene signature was validated by the International Cancer Genome Consortium (ICGC) database. The expressions of RBPs-related genes were validated by using Oncomine database, and the Human Protein Atlas.Result: Most of RBPs-related genes were significantly different in cancer and normal tissue. The survival of patients in the different group was statistically different. The Gene signature showed good performance for predicting the survival of HCC patients by having a better area under the receiver operating characteristic curve than other clinicopathological parameters (AUC=0.758). The patients in the high-risk group were more likely to have a higher Macrophages M0. Conclusion: Gene signature constructed by RNA binding proteins can be independent risk factors for hepatocellular carcinoma patients.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liang Hong ◽  
Yu Zhou ◽  
Xiangbang Xie ◽  
Wanrui Wu ◽  
Changsheng Shi ◽  
...  

Abstract Background Cumulative evidences have been implicated cancer stem cells in the tumor environment of hepatocellular carcinoma (HCC) cells, whereas the biological functions and prognostic significance of stemness related genes (SRGs) in HCC is still unclear. Methods Molecular subtypes were identified by cumulative distribution function (CDF) clustering on 207 prognostic SRGs. The overall survival (OS) predictive gene signature was developed, internally and externally validated based on HCC datasets including The Cancer Genome Atlas (TCGA), GEO and ICGC datasets. Hub genes were identified in molecular subtypes by protein-protein interaction (PPI) network analysis, and then enrolled for determination of prognostic genes. Univariate, LASSO and multivariate Cox regression analyses were performed to assess prognostic genes and construct the prognostic gene signature. Time-dependent receiver operating characteristic (ROC) curve, Kaplan-Meier curve and nomogram were used to assess the performance of the gene signature. Results We identified four molecular subtypes, among which the C2 subtype showed the highest SRGs expression levels and proportions of immune cells, whereas the worst OS; the C1 subtype showed the lowest SRGs expression levels and was associated with most favorable OS. Next, we identified 11 prognostic genes (CDX2, PON1, ADH4, RBP2, LCAT, GAL, LPA, CYP19A1, GAST, SST and UGT1A8) and then constructed a prognostic 11-gene module and validated its robustness in all three datasets. Moreover, by univariate and multivariate Cox regression, we confirmed the independent prognostic ability of the 11-gene module for patients with HCC. In addition, calibration analysis plots indicated the excellent predictive performance of the prognostic nomogram constructed based on the 11-gene signature. Conclusions Findings in the present study shed new light on the role of stemness related genes within HCC, and the established 11-SRG signature can be utilized as a novel prognostic marker for survival prognostication in patients with HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zheng Yao ◽  
Song Wen ◽  
Jun Luo ◽  
Weiyuan Hao ◽  
Weiren Liang ◽  
...  

Background. Accurate and effective biomarkers for the prognosis of patients with hepatocellular carcinoma (HCC) are poorly identified. A network-based gene signature may serve as a valuable biomarker to improve the accuracy of risk discrimination in patients. Methods. The expression levels of cancer hallmarks were determined by Cox regression analysis. Various bioinformatic methods, such as GSEA, WGCNA, and LASSO, and statistical approaches were applied to generate an MTORC1 signaling-related gene signature (MSRS). Moreover, a decision tree and nomogram were constructed to aid in the quantification of risk levels for each HCC patient. Results. Active MTORC1 signaling was found to be the most vital predictor of overall survival in HCC patients in the training cohort. MSRS was established and proved to hold the capacity to stratify HCC patients with poor outcomes in two validated datasets. Analysis of the patient MSRS levels and patient survival data suggested that the MSRS can be a valuable risk factor in two validated datasets and the integrated cohort. Finally, we constructed a decision tree which allowed to distinguish subclasses of patients at high risk and a nomogram which could accurately predict the survival of individuals. Conclusions. The present study may contribute to the improvement of current prognostic systems for patients with HCC.


2020 ◽  
Vol 27 (1) ◽  
pp. 107327482097711
Author(s):  
Jiasheng Lei ◽  
Dengyong Zhang ◽  
Chao Yao ◽  
Sheng Ding ◽  
Zheng Lu

Background: Hepatocellular carcinoma (HCC) remains the third leader cancer-associated cause of death globally, but the etiological basis for this complex disease remains poorly clarified. The present study was thus conceptualized to define a prognostic immune-related gene (IRG) signature capable of predicting immunotherapy responsiveness and overall survival (OS) in patients with HCC. Methods: Five differentially expressed IRG associated with HCC were established the immune-related risk model through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. Patients were separated at random into training and testing cohorts, after which the association between the identified IRG signature and OS was evaluated using the “survival” R package. In addition, maftools was leveraged to assess mutational data, with tumor mutation burden (TMB) scores being calculated as follows: (total mutations/total bases) × 106. Immune-related risk term abundance was quantified via “ssGSEA” algorithm using the “gsva” R package. Results: HCC patients were successfully stratified into low-risk and high-risk groups based upon a signature composed of 5 differentially expressed IRGs, with overall survival being significantly different between these 2 groups in training cohort, testing cohort and overall patient cohort ( P = 1.745e-06, P = 1.888e-02, P = 4.281e-07). No association was observed between TMB and this IRG risk score in the overall patient cohort ( P = 0.461). Notably, 19 out of 29 immune-related risk terms differed substantially in the overall patient dataset. These risk terms mainly included checkpoints, human leukocyte antigens, natural killer cells, dendritic cells, and major histocompatibility complex class I. Conclusion: In summary, an immune-related prognostic gene signature was successfully developed and used to predict survival outcomes and immune system status in patients with HCC. This signature has the potential to help guide immunotherapeutic treatment planning for patients affected by this deadly cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Jun Liu ◽  
Jianjun Lu ◽  
Zhanzhong Ma ◽  
Wenli Li

Background. Hepatocellular carcinoma (HCC) is a common cancer with an extremely high mortality rate. Therefore, there is an urgent need in screening key biomarkers of HCC to predict the prognosis and develop more individual treatments. Recently, AATF is reported to be an important factor contributing to HCC. Methods. We aimed to establish a gene signature to predict overall survival of HCC patients. Firstly, we examined the expression level of AATF in the Gene Expression Omnibus (GEO), the Cancer Genome Atlas (TCGA), and the International Union of Cancer Genome (ICGC) databases. Genes coexpressed with AATF were identified in the TCGA dataset by the Poisson correlation coefficient and used to establish a gene signature for survival prediction. The prognostic significance of this gene signature was then validated in the ICGC dataset and used to build a combined prognostic model for clinical practice. Results. Gene expression data and clinical information of 2521 HCC patients were downloaded from three public databases. AATF expression in HCC tissue was higher than that in matched normal liver tissues. 644 genes coexpressed with AATF were identified by the Poisson correlation coefficient and used to establish a three-gene signature (KIF20A, UCK2, and SLC41A3) by the univariate and multivariate least absolute shrinkage and selection operator Cox regression analyses. This three-gene signature was then used to build a combined nomogram for clinical practice. Conclusion. This integrated nomogram based on the three-gene signature can predict overall survival for HCC patients well. The three-gene signature may be a potential therapeutic target in HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Susu Zheng ◽  
Xiaoying Xie ◽  
Xinkun Guo ◽  
Yanfang Wu ◽  
Guobin Chen ◽  
...  

Pyroptosis is a novel kind of cellular necrosis and shown to be involved in cancer progression. However, the diverse expression, prognosis and associations with immune status of pyroptosis-related genes in Hepatocellular carcinoma (HCC) have yet to be analyzed. Herein, the expression profiles and corresponding clinical characteristics of HCC samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then a pyroptosis-related gene signature was built by applying the least absolute shrinkage and selection operator (LASSO) Cox regression model from the TCGA cohort, while the GEO datasets were applied for verification. Twenty-four pyroptosis-related genes were found to be differentially expressed between HCC and normal samples. A five pyroptosis-related gene signature (GSDME, CASP8, SCAF11, NOD2, CASP6) was constructed according to LASSO Cox regression model. Patients in the low-risk group had better survival rates than those in the high-risk group. The risk score was proved to be an independent prognostic factor for overall survival (OS). The risk score correlated with immune infiltrations and immunotherapy responses. GSEA indicated that endocytosis, ubiquitin mediated proteolysis and regulation of autophagy were enriched in the high-risk group, while drug metabolism cytochrome P450 and tryptophan metabolism were enriched in the low-risk group. In conclusion, our pyroptosis-related gene signature can be used for survival prediction and may also predict the response of immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quanxiao Li ◽  
Limin Jin ◽  
Meng Jin

Hepatocellular carcinoma (HCC) is the most common form of liver cancer with limited therapeutic options and low survival rate. The hypoxic microenvironment plays a vital role in progression, metabolism, and prognosis of malignancies. Therefore, this study aims to develop and validate a hypoxia gene signature for risk stratification and prognosis prediction of HCC patients. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases were used as a training cohort, and one Gene Expression Omnibus database (GSE14520) was served as an external validation cohort. Our results showed that eight hypoxia-related genes (HRGs) were identified by the least absolute shrinkage and selection operator analysis to develop the hypoxia gene signature and demarcated HCC patients into the high- and low-risk groups. In TCGA, ICGC, and GSE14520 datasets, patients in the high-risk group had worse overall survival outcomes than those in the low-risk group (all log-rank P < 0.001). Besides, the risk score derived from the hypoxia gene signature could serve as an independent prognostic factor for HCC patients in the three independent datasets. Finally, a nomogram including the gene signature and tumor-node-metastasis stage was constructed to serve clinical practice. In the present study, a novel hypoxia signature risk model could reflect individual risk classification and provide therapeutic targets for patients with HCC. The prognostic nomogram may help predict individualized survival.


Sign in / Sign up

Export Citation Format

Share Document