scholarly journals Large-Scale Intrinsic Functional Brain Organization Emerges from Three Canonical Spatiotemporal Patterns

Author(s):  
Taylor Bolt ◽  
Jason Nomi ◽  
Danilo Bzdok ◽  
Catie Chang ◽  
B.T. Yeo ◽  
...  

Abstract The past decade of functional neuroimaging research has seen the application of increasingly sophisticated advanced methods to characterize intrinsic functional brain organization. Accompanying these techniques are a patchwork of empirical findings highlighting novel properties of intrinsic functional brain organization. To date, there has been little attempt to understand whether there is an underlying unity across this patchwork of empirical findings. Our study conducted a systematic survey of popular analytic techniques and their output on a large sample of resting-state fMRI data. We found that the apparent complexity of intrinsic functional brain organization can be seamlessly reduced to three fundamental low-frequency spatiotemporal patterns. Our study demonstrates that a long list of previously observed phenomena, including functional connectivity gradients, the task-positive/task-negative pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the network structure of the functional connectome are simply manifestations of these three spatiotemporal patterns. An in-depth characterization of these three spatiotemporal patterns using a novel time-varying complex pattern analysis revealed that these three patterns may arise from a single hemodynamic mechanism.

2021 ◽  
Author(s):  
Taylor S Bolt ◽  
Jason Nomi ◽  
Danilo Bzdok ◽  
Catie Chang ◽  
B.T. Thomas Yeo ◽  
...  

The characterization of intrinsic functional brain organization has been approached from a multitude of analytic techniques and methods. We are still at a loss of a unifying conceptual framework for capturing common insights across this patchwork of empirical findings. By analyzing resting-state fMRI data from the Human Connectome Project using a large number of popular analytic techniques, we find that all results can be seamlessly reconciled by three fundamental low-frequency spatiotemporal patterns that we have identified via a novel time-varying complex pattern analysis. Overall, these three spatiotemporal patterns account for a wide variety of previously observed phenomena in the resting-state fMRI literature including the task-positive/task-negative anticorrelation, the global signal, the primary functional connectivity gradient and the network community structure of the functional connectome. The shared spatial and temporal properties of these three canonical patterns suggest that they arise from a single hemodynamic mechanism.


2018 ◽  
Author(s):  
Benjamin A. Seitzman ◽  
Caterina Gratton ◽  
Scott Marek ◽  
Ryan V. Raut ◽  
Nico U.F. Dosenbach ◽  
...  

AbstractAn important aspect of network-based analysis is robust node definition. This issue is critical for functional brain network analyses, as poor node choice can lead to spurious findings and misleading inferences about functional brain organization. Two sets of functional brain nodes from our group are well represented in the literature: (1) 264 volumetric regions of interest (ROIs) reported in Power et al., 2011 and (2) 333 cortical surface parcels reported in Gordon et al., 2016. However, subcortical and cerebellar structures are either incompletely captured or missing from these ROI sets. Therefore, properties of functional network organization involving the subcortex and cerebellum may be underappreciated thus far. Here, we apply a winner-take-all partitioning method to resting-state fMRI data to generate novel functionally-constrained ROIs in the thalamus, basal ganglia, amygdala, hippocampus, and cerebellum. We validate these ROIs in three datasets using several criteria, including agreement with existing literature and anatomical atlases. Further, we demonstrate that combining these ROIs with established cortical ROIs recapitulates and extends previously described functional network organization. This new set of ROIs is made publicly available for general use, including a full list of MNI coordinates and functional network labels.


2019 ◽  
Vol 30 (2) ◽  
pp. 824-835 ◽  
Author(s):  
Susanne Weis ◽  
Kaustubh R Patil ◽  
Felix Hoffstaedter ◽  
Alessandra Nostro ◽  
B T Thomas Yeo ◽  
...  

Abstract A large amount of brain imaging research has focused on group studies delineating differences between males and females with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing findings, the present study employed a machine learning approach to assess how accurately participants’ sex can be classified based on spatially specific resting state (RS) brain connectivity, using 2 samples from the Human Connectome Project (n1 = 434, n2 = 310) and 1 fully independent sample from the 1000BRAINS study (n = 941). The classifier, which was trained on 1 sample and tested on the other 2, was able to reliably classify sex, both within sample and across independent samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporoparietal regions, insula, and precuneus. These areas were stable across samples and match well with previously described sex differences in functional brain organization. While our data show a clear link between sex and regionally specific brain connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.


2019 ◽  
Vol 30 (3) ◽  
pp. 1716-1734 ◽  
Author(s):  
Ryan V Raut ◽  
Anish Mitra ◽  
Scott Marek ◽  
Mario Ortega ◽  
Abraham Z Snyder ◽  
...  

Abstract Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to diverse behavioral tasks—altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of resting-state infra-slow activity.


2013 ◽  
Vol 36 (3) ◽  
pp. 278-279 ◽  
Author(s):  
Arpan Banerjee ◽  
Barry Horwitz

AbstractPothos & Busemeyer (P&B) argue how key concepts of quantum probability, for example, order/context, interference, superposition, and entanglement, can be used in cognitive modeling. Here, we suggest that these concepts can be extended to analyze neurophysiological measurements of cognitive tasks in humans, especially in functional neuroimaging investigations of large-scale brain networks.


Sign in / Sign up

Export Citation Format

Share Document