scholarly journals Unloading Effect of the Shear Resistance of Rock Joints

Author(s):  
Jianan Yang ◽  
Shuo Wang ◽  
Qiongting Wang ◽  
Wenzheng Xing ◽  
Pengxian Fan

Abstract To investigate the stress path dependent of rock joints, a comparative experimental study was conducted using cement mortar replicas of artificially split rock joints. In total, 32 replicas were casted and divided into four groups by joint roughness coefficient (JRC). The effects of morphologic characteristics, normal stress levels and stress paths on the shear strength of joints were investigated through tangential loading tests and normal unloading tests. The comparative analysis on the test results indicated that the shear resistance has a distinct unloading effect. The variation trend of shear/normal stress ratio against the normal stress and JRC of the two test conditions were identical. However, under low normal-stress condition, the stress ratio of the joints under normal unloading stress is the higher one; while under higher normal stress, the relationship becomes converse. Compared to that of the tangential loading condition, shear/normal stress ratio of the unloading stress path reduces rapidly as the increasing of normal stress, and the influence of the morphology is masked under lower normal stress. The comparative study revealed a previously unknown unloading effect on the mechanical behavior of rock joints and will aid the estimation of the rock joints’ stability in a complex stress environment.

2018 ◽  
Vol 12 (10) ◽  
pp. 3333-3353 ◽  
Author(s):  
Philipp Mamot ◽  
Samuel Weber ◽  
Tanja Schröder ◽  
Michael Krautblatter

Abstract. Instability and failure of high mountain rock slopes have significantly increased since the 1990s coincident with climatic warming and are expected to rise further. Most of the observed failures in permafrost-affected rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. The failure of ice-filled rock joints has only been observed in a small number of experiments, often using concrete as a rock analogue. Here, we present a systematic study of the brittle shear failure of ice and rock–ice interfaces, simulating the accelerating phase of rock slope failure. For this, we performed 141 shearing experiments with rock–ice–rock “sandwich”' samples at constant strain rates (10−3 s−1) provoking ice fracturing, under normal stress conditions ranging from 100 to 800 kPa, representing 4–30 m of rock overburden, and at temperatures from −10 to −0.5 ∘C, typical for recent observed rock slope failures in alpine permafrost. To create close to natural but reproducible conditions, limestone sample surfaces were ground to international rock mechanical standard roughness. Acoustic emission (AE) was successfully applied to describe the fracturing behaviour, anticipating rock–ice failure as all failures are predated by an AE hit increase with peaks immediately prior to failure. We demonstrate that both the warming and unloading (i.e. reduced overburden) of ice-filled rock joints lead to a significant drop in shear resistance. With a temperature increase from −10 to −0.5 ∘C, the shear stress at failure reduces by 64 %–78 % for normal stresses of 100–400 kPa. At a given temperature, the shear resistance of rock–ice interfaces decreases with decreasing normal stress. This can lead to a self-enforced rock slope failure propagation: as soon as a first slab has detached, further slabs become unstable through progressive thermal propagation and possibly even faster by unloading. Here, we introduce a new Mohr–Coulomb failure criterion for ice-filled rock joints that is valid for joint surfaces, which we assume similar for all rock types, and which applies to temperatures from −8 to −0.5 ∘C and normal stresses from 100 to 400 kPa. It contains temperature-dependent friction and cohesion, which decrease by 12 % ∘C−1 and 10 % ∘C−1 respectively due to warming and it applies to temperature and stress conditions of more than 90 % of the recently documented accelerating failure phases in permafrost rock walls.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hang Lin ◽  
Hu Wang ◽  
Yifan Chen ◽  
Rihong Cao ◽  
Yixian Wang ◽  
...  

Many factors influence the shear resistance of rock joints. Among them, the above overburden load is the most important factor. The uneven thickness of the overburden causes the joints to be subjected to the nonuniform distribution load. While the peak shear strength shows nonlinear relationship with normal stress, linear superposition cannot be used to calculate the overall shear resistance of joint under nonuniform normal stress distribution. In this paper, the nonlinear shear strength model, JRC-JCS model, is applied to study the overall shear resistance of the joint under four nonuniform distribution patterns of normal stress. The results show that when the normal stress is distributed in a nonuniform way, the shear resistance provided by rock joint as a whole decreases with the increase of the normal stress distribution interval. Given the nonuniform distribution of normal stress along the joint, the shear resistance obtained by the Mohr-Coulomb linear model is overestimated. In order to give full play to the overall shear performance of the joint, the shear strength at different positions on the joint should be as close as possible. Then, the shear strength of joint parts can enter peak state condition simultaneously, at which time the shear strength is fully exerted.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Wang Feng ◽  
Chi Shichun ◽  
Li Shijie ◽  
Jia Yufeng

We have extended the micromechanics-based analytical (M-A) model to make it capable of simulating Nuozhadu rockfill material (NRFM) under different stress paths. Two types of drained triaxial tests on NRFM were conducted, namely, the stress paths of constant stress ratio (CSR) and the complex stress paths with transitional features. The model was improved by considering the interparticle parameter variation with the unloading-reloading cycles and the effect of the stress transition path. The evolution of local dilatancy at interparticle planes due to an externally applied load is also discussed. Compared with Duncan-Chang’s E-u and E-B models, the improved model could not only better describe the deformation properties of NRFM under the stress path loading, but also present the volumetric strain changing from dilatancy to contractancy with increasing transitional confining pressures. All simulations have demonstrated that the proposed M-A model is capable of modelling the mechanical behaviour of NRFM in the dam.


2009 ◽  
Vol 36 (4) ◽  
pp. 537-548 ◽  
Author(s):  
Márcio M. Farias ◽  
Dorival M. Pedroso ◽  
Teruo Nakai
Keyword(s):  

Author(s):  
J. H. Atkinson ◽  
J. S. Evans ◽  
D. Richardson

AbstractSoil behaviour is stress history dependent and stress path dependent and soil parameters, particularly those for stress-strain behaviour, measured in conventional triaxial tests may not represent the behaviour of soil in many civil engineering works.To obtain more realistic parameters it may be necessary to conduct laboratory tests which more closely represent in situ conditions before and during construction.The paper describes equipment developed at The City University to carry out stress path tests simply and economically. A series of CU triaxial tests and stress path tests on reconstituted soil illustrate the dependence of measured soil parameters on stress history and stress path.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Shigui Du ◽  
Huicai Gao ◽  
Yunjin Hu ◽  
Man Huang ◽  
Hua Zhao

The joint roughness coefficient (JRC) of rock joints has the characteristic of scale effect. JRC measured on small-size exposed rock joints should be evaluated by JRC scale effect in order to obtain the JRC of actual-scale rock joints, since field rock joints are hardly fully exposed or well saved. Based on the validity analysis of JRC scale effect, concepts of rate of JRC scale effect and effective length of JRC scale effect were proposed. Then, a graphic method for determination of the effective length of JRC scale effect was established. Study results show that the JRC of actual-scale rock joints can be obtained through a fractal model of JRC scale effect according to the statistically measured results of the JRC of small-size partial exposed rock joints and by the selection of fractal dimension of JRC scale effect and the determination of effective length of JRC scale effect.


Sign in / Sign up

Export Citation Format

Share Document