Assessment of Hydrogen Production from Municipal Solid Wastes as Competitive Route to Produce Low-Carbon H2

2022 ◽  
Author(s):  
Gabriele Centi ◽  
Alessia Borgogna ◽  
Gaetano Iaquaniello ◽  
Siglinda Perathoner ◽  
Annarita Salladini
2000 ◽  
Vol 41 (3) ◽  
pp. 25-32 ◽  
Author(s):  
M. Okamoto ◽  
T. Miyahara ◽  
O. Mizuno ◽  
T. Noike

The purpose of this study is to investigate the biological hydrogen production potential of individual organic fraction of municipal solid wastes (OFMSW) by batch experiments. Seven varieties of typical organic solid wastes including rice, cabbage, carrot, egg, lean meat, fat and chicken skin were selected to estimate the hydrogen production potential. Among the OFMSW, carbohydrate produced the most hydrogen through biological hydrogen fermentation compared with proteins or lipids. Subsequently, the biological hydrogen production potentials of some individual carbohydrate were measured: cabbage, 26.3–61.7 mL/g-VS; carrot, 44.9–70.7 mL/g-VS; and rice, 19.3–96.0 mL/g-VS. The hydrogen percentages of the total biogas produced from cabbage, carrot and rice were 33.9–55.1%, 27.7–46.8% and 44.0–45.6%, respectively.


Author(s):  
Li Yan ◽  
Yingfang Li ◽  
Bo Yang ◽  
Mohammad Reza Farahani ◽  
Wei Gao

2020 ◽  
Vol 5 (4) ◽  
pp. 202-209
Author(s):  
Alexander Topal ◽  
◽  
Iryna Holenko ◽  
Luidmyla Haponych ◽  
◽  
...  

For the municipal solid waste (MSW) to be used in a proper way, it is necessary to implement clean technologies capable of thermal treatment of MSW and RDF in order to produce heat and electricity while meeting current ecological requirements. Nowadays, a number of technologies for MSW/RDF thermal treating are being used worldwide. Among them, the most proven technologies, applicable for industrial introduction, have been considered while analyzing their advantages/ disadvantages accounting for local conditions of Ukraine.


1997 ◽  
Vol 35 (8) ◽  
pp. 231-238 ◽  
Author(s):  
Tay Joo Hwa ◽  
S. Jeyaseelan

Conditioning of sludges improves dewatering characteristics and reduces the quantity of sludge to be handled. Anaerobic digested sludge collected from a sewage treatment plant contained 1.8% to 8% oil. The increase of specific resistance and capillary suction time (CST) with increasing oil content observed in these samples indicates the interference of oil in dewatering. It has been found that addition of municipal solid wastes incinerator fly ash decreases the specific resistances and capillary suction times of oily sludges rapidly up to 3% dosage. Beyond 3% fly ash, the decrease is less significant and the solids content in the sludge cake increases. This optimum dosage remains the same for sludges with varying oil contents from 1.8% to 12%. The total suspended solids of filtrate decreases with fly ash dosage but the toxic concentrations of heavy metals increases considerably. However at the optimum dosage of 3%, concentrations of heavy metals are within the limits for discharging into the sewers. The correlations of CST with the dewatering characteristics such as specific resistance, filter yield and corrected filter yield are established. These correlations can be used to obtain a quick prediction on dewaterability.


Adsorption ◽  
2021 ◽  
Author(s):  
Anne Streb ◽  
Marco Mazzotti

Abstract Hydrogen as clean energy carrier is expected to play a key role in future low-carbon energy systems. In this paper, we demonstrate a new technology for coupling fossil-fuel based hydrogen production with carbon capture and storage (CCS): the integration of CO2 capture and H2 purification in a single vacuum pressure swing adsorption (VPSA) cycle. An eight step VPSA cycle is tested in a two-column lab-pilot for a ternary CO2–H2–CH4 stream representative of shifted steam methane reformer (SMR) syngas, while using commercial zeolite 13X as adsorbent. The cycle can co-purify CO2 and H2, thus reaching H2 purities up to 99.96%, CO2 purities up to 98.9%, CO2 recoveries up to 94.3% and H2 recoveries up to 81%. The key decision variables for adjusting the separation performance to reach the required targets are the heavy purge (HP) duration, the feed duration, the evacuation pressure and the flow rate of the light purge (LP). In contrast to that, the separation performance is rather insensitive towards small changes in feed composition and in HP inlet composition. Comparing the experimental results with simulation results shows that the model for describing multi-component adsorption is critical in determining the predictive capabilities of the column model. Here, the real adsorbed solution theory (RAST) is necessary to describe all experiments well, whereas neither extended isotherms nor the ideal adsorbed solution theory (IAST) can reproduce all effects observed experimentally.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 660
Author(s):  
Izabela S. Pieta ◽  
Alicja Michalik ◽  
Elka Kraleva ◽  
Dusan Mrdenovic ◽  
Alicja Sek ◽  
...  

Within the Waste2Fuel project, innovative, high-performance, and cost-effective fuel production methods from municipal solid wastes (MSWs) are sought for application as energy carriers or direct drop-in fuels/chemicals in the near-future low-carbon power generation systems and internal combustion engines. Among the studied energy vectors, C1-C2 alcohols and ethers are mainly addressed. This study presents a potential bio-derived ethanol oxidative coupling in the gas phase in multicomponent systems derived from hydrotalcite-containing precursors. The reaction of alcohol coupling to ethers has great importance due to their uses in different fields. The samples have been synthesized by the co-precipitation method via layered double hydroxide (LDH) material synthesis, with a controlled pH, where the M(II)/M(III) ≈ 0.35. The chemical composition and topology of the sample surface play essential roles in catalyst activity and product distribution. The multiple redox couples Ni2+/Ni3+, Cr2+/Cr3+, Mn2+/Mn3+, and the oxygen-vacant sites were considered as the main active sites. The introduction of Cr (Cr3+/Cr4+) and Mn (Mn3+/Mn4+) into the crystal lattice could enhance the number of oxygen vacancies and affect the acid/base properties of derived mixed oxides, which are considered as crucial parameters for process selectivity towards bio-DEE and bio-butanol, preventing long CH chain formation and coke deposition at the same time.


Sign in / Sign up

Export Citation Format

Share Document