Improving some Physical Properties of Sandy Soil and Conocarpus erectus L. Plant Growth by the Application of Hydrogel

2013 ◽  
Vol 53 (4) ◽  
pp. 595-611
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
E. Hanggari Sittadewi., dkk

Nutrient Block is a growing medium product in the form of a square (25 x 25 cm) or cylindrical (diameter = 20 cm, height = 25 cm) made of peat which has been composted, plus adhesive gypsum or tapioca waste. Nutrient Block is designed to support the post mining land rehabilitation program that is now threatening the environmental degradation in mining areas. Nutrient Block products has been proved good for growth because of the media in addition to having physical properties that are capable of storing large amounts of water, contain enough nutrients in the form available to plants,so it can support plant growth. Results of the Nutrient Block application test to Jabon (Anthocephalus cadaba) and Sengon (Paraserianthes falcataria) plants showed that good performance, both plant height and diameter of trees and leaf growth in plants Jabon appear healthy and getting wider.keywords: nutrient block, post-mining land rehabilitation. Paraserianthes falcataria, Anthocephalus cadaba


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492c-492
Author(s):  
Chris Ely ◽  
Mark A. Hubbard

Azomite is a mined, commercially available, hydrated sodium calcium aluminosiliclate soil amendment reported to act as a source of mineral elements. To determine its effect on plant growth, Dendranthema `Connie' rooted cuttings, Malus seedlings, and Citrus seedlings were grown in containers in one of two growing media: ProMix BX or ProMix BX with Azomite (1:1, v:v). Plant height was monitored weekly and after 6 weeks of growth, fresh and dry plant weights of roots and shoots were determined. There was no difference in any of the parameters measured as a result of the addition of Azomite. Any nutritional influence of the Azomite may only be evident in different conditions, e.g., field soil, or over an extended period of time. The Azomite altered the medium's physical properties and therefore bulk density and water-holding capacity of the Azomite were determined for consideration.


Author(s):  
Simon Gluhar ◽  
Anela Kaurin ◽  
Domink Vodnik ◽  
Damijana Kastelec ◽  
Vesna Zupanc ◽  
...  

AGRICA ◽  
2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Sebastianus Kuswara ◽  
Charly Mutiara

Evaluation soil fertility in dusun kekawii III randotonda Village, Ende District, Ende Regency. This study aims to determine the physical properties of the soil and the level of suitability of the land in Kekawii III hamlet, Randotonda village, Ende District, Ende Regency. Research is exploratory research, by evaluating physical properties, the evaluation results are described and compared with the standard physical properties of existing soil. The results of the study show that the soil properties in Kekawii III Hamlet are the soil texture of the sandy soil, clay. In structures, the types that exist are rounded lumps, lumpy angles, granular structures. On the color of the land dominated by Dark brown, Very dark gray, Very dark grayish brown. The consistency of land, it can be seen that these lands have a consistency that is sticky, plastic, loose, soft. The pH of the soil ranges from 4.2-6.4 and the slope ranges from 5% - 12%


2016 ◽  
pp. 23-28
Author(s):  
Andrea Balláné Kovács ◽  
Rita Kremper ◽  
Ida Kincses ◽  
Ágnes Leviczky

A greenhouse pot experiment was conducted to compare the effects of manure with different origin (horse, cattle), various bedding materials (straw, sawdust) and diverse doses (30 t ha-1, 60 t ha-1) and the impact of food waste compost on the plant growth and the available plant nutrient content of soil. The study was conducted on humic sandy soil and consisted of 9 treatments in a randomized complete block design with four replications. Spinach (Spinacia oleracea L.) was grown as the test crop. The treatments were: 1. unfertilized control; 2. horse manure with straw (30 t ha-1); 3. horse manure with sawdust (30 t ha-1); 4. cattle manure (30 t ha-1); 5 food waste compost (30 t ha-1); 6. horse manure with straw (60 t ha-1); 7. horse manure with sawdust (60 t ha-1); 8. cattle manure (60 t ha-1); 9. food waste compost (60 t ha-1). Plant growth was monitored for 4 weeks. Shoot and root weights per pot were measured, total biomass weight per pot were counted. On the basis of the results it can be concluded, that among treatments the application of horse manure with straw enhanced spinach growth most significantly compared to other treatments and to the non-treated control, resulted the highest weights of leaves and roots of spinach. At the same time even small dose (30 t ha-1) of this fertilizer caused increased plant available nitrogen and phosphorus of soil and the higher dosage further increased these values. The horse manure with sawdust applied in lower dose did not alter the leaves and roots weights, but higher portion (60 t ha-1) caused significantly decreased plant biomass. The results proved that the bedding material may significantly alter the composition of manure and may change the plant nutrition effect of organic fertilizer. Cattle manure and food waste compost in both applied doses enhanced plant growth. Both fertilizers increased the plant available nitrogen forms and phosphorus content of soil, but cattle manure caused higher increase.


2020 ◽  
Vol 71 (8) ◽  
pp. 785
Author(s):  
Honghua He ◽  
Zekun Zhang ◽  
Rui Su ◽  
Zhigang Dong ◽  
Qing Zhen ◽  
...  

Plant growth is often constrained by low availability of water and phosphorus (P) in soils in arid and semi-arid areas. Aeolian sandy soils cover >90% of the sandy area of the Mu Us Sandy Land (MUSL) in Northwest China. These soils have low water- and nutrient-retention capacity, limiting their ability to support plant growth. Pisha sandstone, a type of loose rock widely distributed in the MUSL, is regarded as an environmental hazard because it easily weathers, resulting in severe soil erosion and water loss. However, the retention capacity of the aeolian sandy soil can be significantly improved through blending with Pisha sandstone. We investigated the impacts of water supply (35% and 70% of soil water-holding capacity) and P supply (0, 5 and 20 mg P kg–1 soil) on plant growth and P and nitrogen (N) nutrition by growing lucerne (Medicago sativa L.) in MUSL aeolian sandy soil amended or not with Pisha sandstone. Soil type and P supply had greater effects than water supply on lucerne growth and on P and N nutrition. Biomass accumulation and shoot P and N concentrations were increased by amending the aeolian sandy soil with Pisha sandstone and increasing P supply. The N:P ratios in shoots indicated that plant growth was limited by P but not by N. Aeolian sandy soil amended with Pisha sandstone and supplied with P at 5 mg kg–1 enhanced lucerne growth; this practice is feasible for pasture development in the MUSL.


Soil Research ◽  
1998 ◽  
Vol 36 (6) ◽  
pp. 899 ◽  
Author(s):  
D. P. C. Stewart ◽  
K. C. Cameron ◽  
I. S. Cornforth ◽  
J. R. Sedcole

A 2-year field trial determined the influence of applying spent mushroom substrate (SMS) on soil physical properties and the growth of 4 consecutive vegetable crops (sweetcorn, cabbage, potato, cabbage). Treatments comprised 0, 20, 40, and 80 t/ha of moist SMS, both with and without inorganic fertiliser, applied to each crop, giving a range of SMS rates up to 320 t/ha. SMS improved the environment for plant root growth by decreasing soil bulk density (by 0· 05-0·25 g/cm 3 at 100 mm depth), increasing aggregate stability (by 13-16%), reducing clod and surface crust formation (by 16-31 and 18-94%, respectively), increasing the infiltration rate (by 130-207 mm/h), increasing the water content of the soil (by 0-7% w/w), and reducing diurnal temperature changes. Some of these changes were not evident until repeated applications of 80 t/ha SMS had been made. Soil physical properties were related to crop yield, and soil physical properties’ principal components were related to crop principal components using regression analysis (r2 of 0·20-0·60 and 0·16-0·54, respectively). The soil physical properties that had the most influence on plant growth were specific to each crop and included bulk density, water content, surface crust cover, infiltration rate, and aggregate size distribution. Soil physical properties had a large influence on the potato yield irrespective of fertiliser use and on both cabbage crop yields when fertiliser was not used, but not on the sweetcorn yield (the first crop to be grown). The effect of changing soil physical properties on plant growth was most apparent when fertiliser was not used. This was because the improved physical properties increased plant yield (at least in part) because of increased plant nutrient uptake.


Sign in / Sign up

Export Citation Format

Share Document