New Methods for Analyzing Water Pollutants

1982 ◽  
Vol 14 (4-5) ◽  
pp. 59-71 ◽  
Author(s):  
L H Keith ◽  
R C Hall ◽  
R C Hanisch ◽  
R G Landolt ◽  
J E Henderson

Two new methods have been developed to analyze for organic pollutants in water. The first, two-dimensional gas chromatography, using post detector peak recycling (PDPR), involves the use of a computer-controlled gas Chromatograph to selectively trap compounds of interest and rechromatograph them on a second column, recycling them through the same detector again. The second employs a new detector system, a thermally modulated electron capture detector (TMECD). Both methods were used to demonstrate their utility by applying them to the analysis of a new class of potentially ubiquitous anthropoaqueous pollutants in drinking waters- -haloacetonitriles. These newly identified compounds are produced from certain amino acids and other nitrogen-containing compounds reacting with chlorine during the disinfection stage of treatment.

2014 ◽  
Vol 6 (15) ◽  
pp. 5652-5658 ◽  
Author(s):  
Sameera R. Gunatilake ◽  
Taylor L. Clark ◽  
Jose M. Rodriguez ◽  
Todd E. Mlsna

Comprehensive two-dimensional gas chromatography (GC × GC) hyphenated with rapid quadrupole mass spectrometry was successfully used to develop a novel method for the determination of trace level estrogens in influent and effluent wastewater.


Chirality ◽  
2007 ◽  
Vol 19 (3) ◽  
pp. 228-234 ◽  
Author(s):  
Melanie Junge ◽  
Helmut Huegel ◽  
Philip J. Marriott

Separations ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 103
Author(s):  
Hang Dao Thi ◽  
Marko R. Djokic ◽  
Kevin M. Van Geem

Plastic-waste pyrolysis oils contain large amounts of linear, branched, and di-olefinic compounds. This makes it not obvious to determine the detailed group-type composition in particular to the presence of substantial amounts of N-, S-, and O-containing heteroatomic compounds. The thorough evaluation of different column combinations for two-dimensional gas chromatography (GC × GC), i.e., non-polar × polar and polar × non-polar, revealed that the second combination had the best performance, as indicated by the bi-dimensional resolution of the selected key compounds. By coupling the GC × GC to multiple detectors, such as the flame ionization detector (FID), a sulfur chemiluminescence detector (SCD), a nitrogen chemiluminescence detector (NCD), and a mass spectrometer (MS), the identification and quantification were possible of hydrocarbon, oxygen-, sulfur-, and nitrogen-containing compounds in both naphtha (C5–C11) and diesel fractions (C7–C23) originating from plastic-waste pyrolysis oils. Group-type quantification showed that large amounts of α-olefins (36.39 wt%, 35.08 wt%), iso-olefins (8.77 wt%, 9.06 wt%), and diolefins (4.21 wt%, 4.20 wt%) were present. Furthermore, oxygen-containing compounds (alcohols, ketones, and ethers) could be distinguished from abundant hydrocarbon matrix, by employing Stabilwax as the first column and Rxi-5ms as the second column. Ppm levels of sulfides, thiophenes, and pyridines could also be quantified by the use of selective SCD and NCD detectors.


Sign in / Sign up

Export Citation Format

Share Document