Preparation of quaternary ammonium–Chlorella vulgaris and its adsorption of Ag(CN)2−

2015 ◽  
Vol 72 (8) ◽  
pp. 1437-1445
Author(s):  
Ting Li ◽  
Chencen Guo ◽  
Tonghui Xie ◽  
Chengxianyi Zhou ◽  
Yongkui Zhang

A novel anion exchange resin, quaternary ammonium–Chlorella vulgaris (QACV), was prepared by introducing quaternary ammonium groups onto dried Chlorella vulgaris as base material. Degrees of epoxy, amine and quaternary ammonium groups of QACV were measured. Water retention, optical microscopy, and Fourier transform infrared spectrometry were used to characterize QAVC. The adsorption behavior of QACV towards Ag(CN)2− in different conditions was studied carefully. The results showed that QAVC was efficient to adsorb Ag(CN)2− at pH 9–11, and adsorption equilibrium was almost reached in 30 min. Both kinetics and isotherm parameters in the adsorption process were obtained. The data indicated that the pseudo-second-order model provided a good correlation for adsorption of Ag(CN)2− on QACV and the calculated rate constant of the adsorption was 3.51 g/(mmol min). The equilibrium data fitted well in the Langmuir isotherm and the estimated maximum adsorption capacity qm was 1.96 mmol/g. The dimensionless separation factor RL was between 0 and 1, suggesting that the adsorption process of Ag(CN)2− using QACV was favorable. The QACV could be used successively three times without significantly affecting its adsorption efficiency. Chlorella vulgaris was a potential base material to be modified with quaternary ammonium groups to prepare an adsorbent for adsorption of Ag(CN)2−.

2021 ◽  
Vol 55 (9-10) ◽  
pp. 1131-1142
Author(s):  
BENGÜ ERTAN ◽  

Stinging nettle was used as lignocellulosic adsorbent for the removal of cationic dye – malachite green (MG), and anionic dye – Congo red (CR), from aqueous solution, without any chemical pretreatment. The adsorption equilibrium data fitted well with the Langmuir model for the adsorption of both dyes, with the calculated maximum adsorption capacity of 270.27 mgg-1 and 172.14 mgg-1 for MG and CR, respectively. The adsorption process was controlled by the pseudo-second-order model in the adsorption of MG and by the pseudo-first-order model in the adsorption of CR. The thermodynamics modelling displayed that the process was spontaneous and endothermic. The π–π electron–donor interaction, hydrogen bonds and pore diffusion may also be effective, besides electrostatic interaction between the adsorbate and the adsorbent in the mechanism of MG and CR uptake.


2012 ◽  
Vol 209-211 ◽  
pp. 2005-2008 ◽  
Author(s):  
Fang Juan Zhang ◽  
Hua Yong Zhang ◽  
Lu Yi Zhang

The feasibility of coal gangue as an adsorbent for phosphate removal from wastewater was investigated. The results showed that the equilibrium data were well fit to Langmuir isotherm model and the maximum adsorption capacity calculated was 2.49 mg/g at 25°C. The adsorption process followed pseudo-second order model. And the practical waste water experiment indecated that the phosphate concentration of real sewage decreased from 0.625mg/L to 0.121mg/L. These results suggested that coal gangue can be used as an adsorbent to removal phosphate from wastewater.


2016 ◽  
Vol 88 (12) ◽  
pp. 1143-1154
Author(s):  
Andreea Gabor ◽  
Corneliu Mircea Davidescu ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
Cornelia Muntean ◽  
...  

Abstract This paper presents the sorption properties of a new adsorbent material prepared by impregnating Amberlite XAD 7 polymer with sodium β-glycerophosphate. For impregnation, the pellicular vacuum solvent vaporization method was employed. The functionalization was evidenced by energy dispersive X-ray analysis. The usefulness of this material and its performances were studied for the adsorption of the rare earth element La(III) in batch experiments. The influence of various parameters affecting the adsorption of lanthanum like contact time, initial concentration, pH value, and temperature was studied. The kinetic of the adsorption process was best described by the pseudo-second-order model. Sips isotherm was found to be the best fit of the equilibrium data. The maximum adsorption capacity of the functionalized material was of 33.8 mg La(III)/g. The values of thermodynamic parameters (ΔGo, ΔHo, ΔSo) showed that the adsorption process was endothermic and spontaneous. The results proved that Amberlite XAD 7 functionalized with sodium β-glycerophosphate is an efficient adsorbent for the removal of La(III) ions from aqueous solutions. Quantum chemistry was performed using Spartan software.


2015 ◽  
Vol 52 (3) ◽  
pp. 187-195 ◽  
Author(s):  
Zhenyu Wu ◽  
Dasheng Gao ◽  
Ningning Liu

An anion-functionalized nanoporous polymer was successfully prepared by quaternary ammonization and anion-exchange treatment method. The polymer was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, N2 adsorption/desorption isotherms and thermogravimetric analysis. Batch experiments were conducted to investigate the adsorption behavior of phosphate on the polymer. The results indicated that the experimental equilibrium data can be well described by the Langmuir model. The maximum adsorption capacity determined from the Langmuir model was 4.92 mg g−1. For kinetic study, the adsorption behavior followed the pseudo-second-order model. Thermodynamic studies indicated that the adsorption process was spontaneous and exothermic.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1003 ◽  
Author(s):  
Ainoa Murcia-Salvador ◽  
José A. Pellicer ◽  
María I. Fortea ◽  
Vicente M. Gómez-López ◽  
María I. Rodríguez-López ◽  
...  

The dyeing industry is one of the most polluting in the world. The adsorption of dyes by polymeric matrixes can be used to minimize the discharge of dyes into the environment. In the present study, chitosan-NaOH and β-cyclodextrin-epichlorohydrin polymers were used to remove the dye Direct Blue 78 from a wastewater model. To understand the adsorption behavior of Direct Blue 78 onto the polymers, adsorption rate and maximum adsorption capacity were calculated using kinetic tests and isotherm curves respectively. The kinetic data and mechanism of the adsorption process were analyzed by three models and the equilibrium data by three adsorption isotherms; also the different thermodynamic parameters were calculated. Results showed that the adsorption process follows pseudo-second-order kinetics in both polymers and the Langmuir isotherm best-fitted data for chitosan-NaOH polymer and the Freundlich isotherm for the β-CDs-EPI polymer. The adsorption process is exothermic in both cases and spontaneous for the β-CDs-EPI polymer to a certain temperature and not spontaneous for the chitosan-NaOH polymer and β-CDs-EPI polymer at higher temperatures. The complementary action of an advanced oxidation process eliminated >99% of the dye from water. The coupled process seems to be suitable for reducing the environmental impact of the dyeing industry.


2018 ◽  
Vol 10 (12) ◽  
pp. 4440 ◽  
Author(s):  
Maria Boni ◽  
Agostina Chiavola ◽  
Simone Marzeddu

BIOTON® biochar, produced by a wood biomass pyrolysis process, which is usually applied as soil amendment, was investigated for a novel application, i.e., the adsorption of lead from contaminated solutions. The experimental activity included physical and chemical characterization of BIOTON®; and Scanning Electron Microscope (SEM) images to highlight its internal structure. The adsorption process was investigated through batch and column experiments. Adsorption kinetics showed very rapid achievement of equilibrium conditions, i.e., 50 mg/L and 100 mg/L initial Pb concentration at 2 h and 4 h, respectively. Complete removal also occurred within the same time. The Brunauer–Emmett–Teller model was a better fit for the equilibrium data of both Pb concentrations, whereas the kinetics were best represented by the pseudo second-order model. Column tests showed that the addition of biochar as an adsorbent media within the bed significantly extended the time of breakthrough and exhaustion, with respect to the column filled with soil only. The values found for the adsorption capacity of BIOTON®- versus lead-containing solutions were comparable to those reported for commercial adsorbents. Therefore, BIOTON® can be considered a valid option: It also offers the additional benefit of allowing the recovery of a residue, which alternately would need to be disposed of.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mashael Alshabanat ◽  
Ghadah Alsenani ◽  
Rasmiah Almufarij

The adsorption of crystal violet (CV) onto date palm fibers (DPFs) was examined in aqueous solution at 25°C. The experimental maximum adsorption capacity value was0.66×10−6. Langmuir, Freundlich, Elovich and Temkin models were applied to describe the equilibrium isotherms. The influence of pH and temperature on dye removal was evaluated. The percentage removal of CV dye by adsorption onto DPF at different pH and temperatures showed that these factors play a role in the adsorption process. Thermodynamic analysis was performed, and the Gibbs free energyΔGο, enthalpy changeΔHο, and entropyΔSοwere calculated. The negative values ofΔGοindicate spontaneous adsorption. The negative value ofΔHοindicates that the interaction between CV and DPF is exothermic, and the positive value ofΔSοindicates good affinity between DPF and CV. The kinetic data were fitted to a pseudo-second-order model.


2020 ◽  
Vol 7 (3) ◽  
pp. 191811
Author(s):  
Yazhen Wang ◽  
Shuang Li ◽  
Liqun Ma ◽  
Shaobo Dong ◽  
Li Liu

Corn stalk was used as the initial material to prepare a corn stalk matrix-g-polyacrylonitrile-based adsorbent. At first, the corn stalk was treated with potassium hydroxide and nitric acid to obtain the corn stalk-based cellulose (CS), and then the CS was modified by 2-bromoisobutyrylbromide (2-BiBBr) to prepare a macroinitiator. After that, polyacrylonitrile (PAN) was grafted onto the macroinitiator by single-electron transfer living radical polymerization (SET-LRP). A novel adsorbent AO CS-g-PAN was, therefore, obtained by introducing amidoxime groups onto the CS-g-PAN with hydroxylamine hydrochloride (NH 2 OH · HCl). FTIR, SEM and XPS were applied to characterize the structure of AO CS-g-PAN. The adsorbent was then employed to remove Pb(II) and Cu(II), and it exhibited a predominant adsorption performance on Pb(II) and Cu(II). The effect of parameters, such as temperature, adsorption time, pH and the initial concentration of metal ions on adsorption capacity, were examined in detail during its application. Results suggest that the maximum adsorption capacity of Pb(II) and Cu(II) was 231.84 mg g –1 and 94.72 mg g −1 , and the corresponding removal efficiency was 72.03% and 63%, respectively. The pseudo-second order model was more suitable to depict the adsorption process. And the adsorption isotherm of Cu(II) accorded with the Langmuir model, while the Pb(II) conformed better to the Freundlich isotherm model.


Sign in / Sign up

Export Citation Format

Share Document