Extracellular vesicles derived from adipose-derived stem cells accelerate diabetic wound healing by suppressing the expression of matrix metalloproteinase-9

Author(s):  
Jiang-wen Wang ◽  
Yuan-zheng Zhu ◽  
Xuan Hu ◽  
Jia-ying Nie ◽  
Zhao-hui Wang ◽  
...  

Background: The healing of diabetic wounds is poor due to a collagen deposition disorder. Matrix metalloproteinase-9 (MMP-9) is closely related to collagen deposition in the process of tissue repair. Many studies have demonstrated that extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) promote diabetic wound healing by enhancing collagen deposition. Objective: In this study, we explored if ADSC-EVs could downregulate the expression of MMP-9 in diabetic wounds and promote wound healing by improving collagen deposition. The potential effects of ADSC-EVs on MMP-9 and diabetic wound healing were tested both in vitro and in vivo. Methods: We first evaluated the effect of ADSC-EVs on the proliferation and MMP-9 secretion of HaCaT cells treated with advanced glycation end product-bovine serum albumin (AGE-BSA), using CCK-8 western blot and MMP-9 enzyme-linked immunosorbent assay(ELISA). Next, the effect of ADSC-EVs on the healing, re-epithelialisation, collagen deposition, and MMP-9 concentration in diabetic wound fluids was evaluated in an immunodeficient mouse model via MMP-9 ELISA and haematoxylin and eosin, Masson’s trichrome, and immunofluorescence staining for MMP-9. Results: In vitro, ADSC-EVs promoted the proliferation and MMP-9 secretion of HaCaT cells.In vivo, ADSC-EVs accelerated diabetic wound healing by improving re-epithelialisation and collagen deposition and by inhibiting the expression of MMP-9. Conclusion: ADSC-EVs possessed the healing of diabetic wounds in a mouse model by inhibiting downregulating MMP-9 and improving collagen deposition.Thus ,ADSC-EVs are a promising candidate for the treatment of diabetic wounds .

2021 ◽  
Author(s):  
Qian Wei ◽  
Yaxi Wang ◽  
Kui Ma ◽  
Xiaowei Bian ◽  
Qiankun Li ◽  
...  

Abstract Background: Endothelial dysfunction caused by persistent hyperglycemia in diabetes is responsible for impaired angiogenesis in diabetic wounds. Exosomes are considered potential therapeutic tools to promote diabetic wound healing. The aim of this study was to investigate the effects of exosomes secreted by human umbilical cord mesenchymal stem cells (hucMSC-Exos) on angiogenesis under high glucose (HG) conditions in vivo and in vitro and to explore the underlying mechanisms.Methods: HucMSC-Exos were used to treat diabetic wounds and human umbilical vascular endothelial cells (HUVECs) exposed to HG. Wound healing and angiogenesis were assessed in vivo. The biological characteristics of HUVECs were examined in vitro. Expression of pro-angiogenesis genes in HUVECs was also examined by western blotting. The miRNAs contained within hucMSC-Exos were identified using miRNA microarrays and qRT-PCR. The roles of selected miRNAs in angiogenesis were assessed using specific agomirs and inhibitors.Results: In vivo, local application of hucMSC-Exos enhanced wound healing and angiogenesis. In vitro, hucMSC-Exos reduced senescence of HG-treated HUVECs and promoted proliferation, migration, and tube formation by inhibiting phosphatase and tensin homolog (PTEN) expression and activating the AKT/HIF-1α/VEGF pathways. MiR-221-3p was enriched in hucMSC-Exos. In vitro, MiR-221-3p downregulated PTEN and activated the AKT/HIF-1α/VEGF pathway to promote proliferation, migration, and tube formation in HG-treated HUVECs. In vivo, miR-221-3p agomirs mimicked the effects of hucMSC-Exos on wound healing and angiogenesis, whereas miR-221-3p inhibitors reversed their effects.Conclusions: Our findings suggest that hucMSC-Exos have regenerative and protective effects on HG-induced senescence in endothelial cells via transfer of miR-221-3p, thereby accelerating diabetic wound healing. Thus, hucMSC-Exos may be promising therapeutic candidates for improving diabetic wound angiogenesis.


2018 ◽  
Vol 315 (6) ◽  
pp. C885-C896 ◽  
Author(s):  
Jianming Guo ◽  
Haidi Hu ◽  
Jolanta Gorecka ◽  
Hualong Bai ◽  
Hao He ◽  
...  

We have previously shown that bone marrow-derived mesenchymal stem cells (BMSC) accelerate wound healing in a diabetic mouse model. In this study, we hypothesized that adipose tissue-derived stem cells (ADSC), cells of greater translational potential to human therapy, improve diabetic wound healing to a similar extent as BMSC. In vitro, the characterization and function of murine ADSC and BMSC as well as human diabetic and nondiabetic ADSC were evaluated by flow cytometry, cell viability, and VEGF expression. In vivo, biomimetic collagen scaffolds containing murine ADSC or BMSC were used to treat splinted full-thickness excisional back wounds on diabetic C57BL/6 mice, and human healthy and diabetic ADSC were used to treat back wounds on nude mice. Wound healing was evaluated by wound area, local VEGF-A expression, and count of CD31-positive cells. Delivery of murine ADSC or BMSC accelerated wound healing in diabetic mice to a similar extent, compared with acellular controls ( P < 0.0001). Histological analysis showed similarly increased cellular proliferation ( P < 0.0001), VEGF-A expression ( P = 0.0002), endothelial cell density ( P < 0.0001), numbers of macrophages ( P < 0.0001), and smooth muscle cells ( P < 0.0001) with ADSC and BMSC treatment, compared with controls. Cell survival and migration of ADSC and BMSC within the scaffolds were similar ( P = 0.781). Notch signaling was upregulated to a similar degree by both ADSC and BMSC. Diabetic and nondiabetic human ADSC expressed similar levels of VEGF-A ( P = 0.836) in vitro, as well as in scaffolds ( P = 1.000). Delivery of human diabetic and nondiabetic ADSC enhanced wound healing to a similar extent in a nude mouse wound model. Murine ADSC and BMSC delivered in a biomimetic-collagen scaffold are equivalent at enhancing diabetic wound healing. Human diabetic ADSC are not inferior to nondiabetic ADSC at accelerating wound healing in a nude mouse model. This data suggests that ADSC are a reasonable choice to evaluate for translational therapy in the treatment of human diabetic wounds.


2018 ◽  
Vol 107 ◽  
pp. 625-633 ◽  
Author(s):  
Mohamed Gadelkarim ◽  
Abdelrahman Ibrahim Abushouk ◽  
Esraa Ghanem ◽  
Ali Mohamed Hamaad ◽  
Anas M. Saad ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Chandrama Shrestha ◽  
Liling Zhao ◽  
Ke Chen ◽  
Honghui He ◽  
Zhaohui Mo

Objective. Mesenchymal stem cells (MSCs) isolated from the umbilical cord and their conditioned media (CM) can be easily obtained and refined compared with stem cells from other sources. Here, we explore the possibility of the benefits of these cells in healing diabetic wounds.Methodology and Results. Delayed wound healing animal models were established by making a standard wound on the dorsum of eighteen db/db mice, which were divided into three groups with six mice in each: groups I, II, and III received PBS, UC-MSC, and CM, respectively. UC-MSC and their CM significantly accelerated wound closure compared to PBS-treated wounds, and it was most rapid in CM-injected wounds. In day-14 wounds, significant difference in capillary densities among the three groups was noted (n=6;P<0.05), and higher levels of VEGF, PDGF, and KGF expression in the CM- and UC-MSC-injected wounds compared to the PBS-treated wounds were seen. The expression levels of PDGF-βand KGF were higher in CM-treated wounds than those in UC-MSC-treated wounds.Conclusion. Both the transplantation of UC-MSC and their CM are beneficial to diabetic wound healing, and CM has been shown to be therapeutically better than UC-MSC, at least in the context of diabetic wound healing.


2006 ◽  
Vol 203 (3) ◽  
pp. S43 ◽  
Author(s):  
Anna M. Parker ◽  
George Rodeheaver ◽  
Lisa Salopek ◽  
Hulan Shang ◽  
Moshe Khurgel ◽  
...  

2017 ◽  
Vol 49 (10) ◽  
pp. 541-548 ◽  
Author(s):  
Junwang Xu ◽  
Carlos Zgheib ◽  
Maggie M. Hodges ◽  
Robert C. Caskey ◽  
Junyi Hu ◽  
...  

Impaired diabetic wound healing is associated with a dermal extracellular matrix protein profile favoring proteolysis; within the healing diabetic wound, this is represented by an increase in activated matrix metalloproteinase (MMPs). Treatment of diabetic wounds with mesenchymal stem cells (MSCs) has been shown to improve wound healing; however, there has not yet been an assessment of their ability to correct dysregulation of MMPs in diabetic wounds. Furthermore, there has been no prior assessment of the role of microRNA29b (miR-29b), an inhibitory regulatory molecule that targets MMP-9 mRNA. Using in vitro models of fibroblast coculture with MSCs and in vivo murine wound healing models, we tested the hypothesis that MSCs correct dysregulation of MMPs in a microRNA-29b-dependent mechanism. In this study, we first demonstrated that collagen I and III protein content is significantly reduced in diabetic wounds, and treatment with MSCs significantly improves collagen I content in both nondiabetic and diabetic wounds. We then found that MMP-9 gene expression and protein content were significantly upregulated in diabetic wounds, indicating elevated proteolysis. Treatment with MSCs resulted in a decrease in MMP-9 gene expression and protein content level in diabetic wounds 3 and 7 days after wounding. Zymographic analysis indicated that MSC treatment also decreased the amount of activated MMP-9 present in diabetic wounds. Furthermore, miR-29b expression was inversely associated with MMP-9 gene expression; miR-29b expression was decreased in diabetic wounds and diabetic fibroblast. Following treatment of diabetic wounds with MSCs, as well as in diabetic fibroblasts cocultured with MSCs, miR-29b was significantly increased. These findings suggest a potential mechanism through which MSCs enhance diabetic wound healing by improving collagen I content in diabetic wounds through decreasing MMP-9 expression and increasing miR-29b expression.


2021 ◽  
Author(s):  
Jiankai Li ◽  
Tianshuai Zhang ◽  
Mingmang Pan ◽  
Feng Xue ◽  
Fang Lv ◽  
...  

Abstract Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Herein, a nanofiber/ hydrogel core-shell scaffold with three-dimensional (3D) multilayer patterned structure (3D-PT-P/GM) was introduced for promoting diabetic wound healing with improved angiogenesis. The results showed that the 3D-PT-P/GM scaffolds possessed multilayered structure with interlayer spacing of about 15-80 μm, and the hexagonal micropatterned structures were uniformly distributed on the surface of each layer. The nanofibers in the scaffold exhibited distinct core-shell structures with Gelatin methacryloyl (GelMA) hydrogel as the shell and Poly (D, L-lactic acid) (PDLLA) as the core. The results showed that the porosity, water retention time and water vapor permeability of the 3D-PT-P/GM scaffolds increased to 1.6 times, 21 times, and 1.9 times than that of the two-dimensional (2D) PDLLA nanofibrous scaffolds, respectively. The in vitro studies showed that the 3D-PT-P/GM scaffolds could significantly promote cell adhesion, proliferation, infiltration and migration throughout the scaffolds, and the expression of cellular communication protein-related genes, as well as angiogenesis-related genes in the same group, was remarkably upregulated. The in vivo results further demonstrated that the 3D-PT-P/GM scaffolds could not only effectively absorb exudate and provide a moist environment for the wound sites, but also significantly promote the formation of a 3D network of capillaries. As a result, the healing of diabetic wounds was accelerated with enhanced angiogenesis, granulation tissue formation, and collagen deposition. These results indicate that nanofiber/ hydrogel core-shell scaffolds with 3D multilayer patterned structures could provide a new strategy for facilitating chronic wound healing.


2021 ◽  
Author(s):  
Sheikh Tanzina Haque ◽  
Subbroto Kumar Saha ◽  
Md. Enamul Haque ◽  
Nirupam Biswas

Diabetic wounds often presage chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often warrant unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that...


Sign in / Sign up

Export Citation Format

Share Document