Green synthesis of silver nanoparticles from Psidium guajava leaves and its antibacterial activity

2017 ◽  
Vol 6 (7) ◽  
pp. 5441 ◽  
Author(s):  
Geetha Venugopal

In the present study, Psidium guajava leaves were taken for synthesizing silver nanoparticles and checked their antibacterial activity against E.coli, Klebsiella, Pseudomonas, Staphylococcus and Acinetobacter. The plant extract was analysed for the detection of the presence of protein, carbohydrate, flavonoids, terpenoids, glycosides, steroids, saponins, phenols and tannins. In this present study, the antibacterial activity of green synthesized silver nanoparticles from guava leaf shows the zone of inhibition against all the five pathogens.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanna Gevorgyan ◽  
Robin Schubert ◽  
Mkrtich Yeranosyan ◽  
Lilit Gabrielyan ◽  
Armen Trchounian ◽  
...  

AbstractThe application of green synthesis in nanotechnology is growing day by day. It’s a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly’s potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV–Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.


2021 ◽  
Author(s):  
Sanjay Ratan Kumavat ◽  
SATYENDRA MISHRA

Abstract Plants are emerging as a cost-effective and ecofriendly method for green synthesis of nanoparticles. The plant extract Launaea procumbens was used as a reduction agent in the green synthesis of silver nanoparticles. UV-Visible spectroscopy, HR-TEM, SAED, FE-SEM, EDAX, DLS, and FT-IR were used to study the green synthesized silver nanoparticles. UV-Vis spectroscopy of a prepared silver solution revealed maximum absorption at 435 nm. The synthesized silver nanoparticles were found to be spherical in shape with a size in the range of 24.28 to 31.54 nm. DLS analysis was used to determine the size of the green synthesized silver nanoparticles, which showed outstanding antibacterial action against Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus, as well as Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Gram-positive Bacillus subtilis had a maximum zone of inhibition of 20 mm, Staphylococcus aureus had a zone of inhibition of 19 mm, and Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa had zones of inhibition of 13 mm.


2016 ◽  
Author(s):  
Patcharaporn Tippayawat ◽  
Nutthakritta Phromviyo ◽  
Parichart Boueroy ◽  
Apiwat Chompoosor

Background: There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods: AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results: The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications. Discussion: Aloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6h at 200 oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.


2014 ◽  
Vol 2 (3) ◽  
pp. 305-310
Author(s):  
N. Packialakshmi ◽  
S. Naziya

The aim of this study was to synthesis of silver nanoparticles in the aqueous stem extracts of Caralluma fimbriyata and investigate its antibacterial activity. Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous stem extracts of plant parts to generate to extremely stable silver nanoparticles in water. The chemical groups studied using FT-IR analysis. Green synthesized silver nanoparticles showed zone of inhibition against isolated gram positive and gram negative bacteria. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10796Int J Appl Sci Biotechnol, Vol. 2(3): 305-310  


RSC Advances ◽  
2020 ◽  
Vol 10 (35) ◽  
pp. 20676-20681
Author(s):  
Renata Pascoal Illanes Tormena ◽  
Eliane Vieira Rosa ◽  
Bruna de Fátima Oliveira Mota ◽  
Juliano Alexandre Chaker ◽  
Christopher William Fagg ◽  
...  

Silver nanoparticles with low toxicity and improved antibacterial activity are obtained by a green route using microwave-assisted synthesis with plant extract.


Author(s):  
Patcharaporn Tippayawat ◽  
Nutthakritta Phromviyo ◽  
Parichart Boueroy ◽  
Apiwat Chompoosor

Background: There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods: AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results: The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications. Discussion: Aloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6h at 200 oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.


Sign in / Sign up

Export Citation Format

Share Document