scholarly journals Modeling and Trend Analysis of Climatic Variables of Ranchi District, Jharkhand

2021 ◽  
Vol 8 (2) ◽  
pp. 120-128
Author(s):  
PAWAN JEET ◽  
KN SINGH ◽  
RAJEEV RANJAN KUMAR ◽  
BISHAL GURANG ◽  
AK SINGH ◽  
...  

In this paper, an attempt has been made to study the temporal variation in monthly, seasonal and annual rainfall, and average annual maximum and minimum temperature for the period 1901-2015 over Ranchi district of Jharkhand, India. Long-term changes in rainfall, temperature was determined by Man-Kendall rank statistics and Sen’s slope, and forecasting of time series was determined by ARIMA model. The results revealed that there was significant decrease of average rainfall in the month of February and August while increase in month May and Pre-monsoon season. Average rainfall in the month of February, May, August and Pre-monsoon season showing insignificant increasing as well as decreasing rainfall trend. The average annual maximum and minimum temperature showing decreasing and increasing trend over Ranchi district during the period 1901 to 2015. This paper also describes five-year prediction of rainfall and temperature climatic variables.

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Sujeet Kumar ◽  
Shakti Suryavanshi

A trend analysis was performed for historic (1901-2002) climatic variables (Rainfall, Maximum Temperature and Minimum Temperature) of Uttarakhand State located in Northern India. In the serially independent climatic variables, Mann-Kendall test (MK test) was applied to the original sample data. However, in the serially correlated series, prewhitening is utilized before employing the MK test. The results of this study indicated a declining trend of rainfall in monsoon season for seven out of thirteen districts of Uttarakhand state. However, an increasing trend was observed in Haridwar and Udhamsingh Nagar districts for summer season rainfall. For maximum and minimum temperature, a few districts exhibited a declining trend in monsoon season whereas many districts exhibited an increasing trend in winter and summer season. Mountain dominated areas (as Uttarakhand state) are specific ecosystems, distinguished by their diversity, sensitivity and intricacy. Thus the variability of rainfall and temperature has a severe and rapid impact on mountainous ecosystems. Nevertheless, mountains have significant impacts on hydrology, which may further threaten populations living in the mountain areas as well as in adjacent, lowland regions.


Author(s):  
S. Sridhara ◽  
Pradeep Gopakkali ◽  
R. Nandini

Aims: To know the rainfall and temperature trend for all the districts of Karnataka state to develop suitable coping mechanisms for changing weather conditions during the cropping season. Study Design: The available daily data of rainfall (1971-2011) and minimum and maximum temperature (1971-2007) for each district was collected from NICRA-ICAR website. A non-parametric model such as the Mann-Kendall (MK) test complemented with Sen’s slope estimator was used to determine the magnitude of the trend. Place and Duration of Study: The rainfall data of 41 years (1971-2011) and temperature data of 37 years (1971-2007) was collected for all 27 districts of Karnataka. Methodology: Basic statistics related to rainfall like mean, standard deviation (SD), the coefficient of variation (CV) and the percentage contribution to annual rainfall were computed for monthly and season-wise. Mann-Kendall test was used to detect trend for rainfall as well as temperature. Results: An increasing trend in rainfall during winter, monsoon and annual basis for all most all the districts of Karnataka and decreasing trend of rainfall during pre and post-monsoon season was noticed. An early cessation of rainfall during September month in all most all the districts of Karnataka was observed. Similarly, monthly mean, maximum and the minimum temperature had shown an increasing trend over the past 37 years for all the districts of Karnataka. Conclusion: The more variation in rainfall during the pre-monsoon season was observed, which is more important for land preparation and other operations. The increasing trend of maximum and minimum temperature throughout the year may often cause a reduction in crop yield. It is necessary to change crops with its short duration varieties in order to avoid late season drought.


2019 ◽  
Vol 14 (2) ◽  
pp. 312-319
Author(s):  
Vaibhav Deoli ◽  
Saroj Rana

The present study is mainly focused on to detection of changing trend in rainfall and temperature for Udaipur district situated in the Rajasthan state of India. The district situated in the western part of India which obtained less rainfall as compared with the average rainfall of India. In the present article, the approach has been tried to analysis to detect rainfall trend, maximum temperature trend and minimum temperature trend for the area. For this daily rainfall data of 39 years (1975 to 2013) add seasonally and the temperature has been calculated by averaging of daily temperature for a period of 39 years. For determining the trend the year has been shared out into four seasons like the winter season, pre-monsoon season, monsoon season and post-monsoon season. To obtained magnitude of trend San’s slope estimator test has been used and for significance in trend Mann-Kendall statistics test has been applied. The results obtained for the study show significantly decreasing rainfall trend for the season winter and season post-monsoon whereas pre-monsoon and monsoon show increasing rainfall trend. The maximum temperature of pre-monsoon and monsoon months shows a significantly increasing trend whereas, in minimum temperature, winter season and pre-monsoon season shows an increasing trend which is significant at 10% level of significance and post-monsoon shows a decreasing trend which is also significant at 10% level of significance.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Jhuma Biswas 1

This study examines the long term trend of the radiatively active atmospheric aerosols which can influence the Earth’s energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei. MODIS sensor on board the NASA Earth Observing System Terra and Aqua satellite based Aerosol Optical Depth (AOD) data are used for long term analysis of aerosols over Bongaigaon, Assam for the period August, 2002 to March, 2017. Highest AOD values are observed in pre-monsoon (March-May) season due to long range transportation as well as intense biomass burning activities especially as a part of Jhum cultivation. In general, AOD values are low in post-monsoon (October-November) season which may be due to wash out of aerosols by rain in the preceding months without enough replacement. The monthly AOD values vary from its highest value 0.949 in April, 2016 to its lowest value 0.107 in November, 2002 for the study period. From the comparison of MODIS Terra and Aqua AOD at 550 nm, it is clearly seen that generally Terra AOD at 10:30 hr is higher than the Aqua AOD at 13:30hr. A slowly increasing trend of both Aqua and Terra AOD at 550 nm is observed over the study location. The observed Ångström exponent value varies from its minimum value in monsoon season to its maximum value in winter season. With increasing AOD values, horizontal visibility decreases over Bongaigaon.


2021 ◽  
Vol 23 (1) ◽  
pp. 20-27
Author(s):  
Cilcia Kusumastuti ◽  
Dicky Gode ◽  
Yobella Febe Kurnianto ◽  
Frederik Jones Syaranamual

Climate change impacts have gained great attention to be studied in various fields. In this paper, an investigation of rainfall pattern change is performed using three statistical methods, i.e., simple linear regression, t-test, and Mann-Kendall’s test. The analysis is performed at 10- and 20-year time scales of daily, monthly, and annual rainfall in Flores Island, a dry region in Indonesia. In general, an increasing monthly rainfall trend is detected in the rainy season (October – April) at a 20-year period, using all three methods. Specifically, a significant increasing trend in March 1989 – 2008 is observed, and it contributes to the significant increasing trend of annual rainfall.  The findings presented in this paper should be an alert for potential climate change impacts in the region. The positive consideration of having more rainfall in a dry region might turn into a negative reality when adaptation measures are not well-prepared.


MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 155-162
Author(s):  
S. M. METRI ◽  
KHUSHVIR SINGH

In this paper the rainfall features at different raingauge stations of Goa state have been studied for the period of 30 years. The statistical parameters such as mean monthly rainfall, Standard Deviation and Coefficient of Variation have been computed for each raingauge station of Goa. Some heavy rainfall events during the period have also been studied. The study shows the significant rising trend of rainfall towards the eastern parts of Goa. Goa experiences an average rainfall of about 330 cm annually and around 90% of annual rainfall occurs during southwest monsoon season i.e. (June to September). Studies revealed that most of heavy rainfall events caused due to active off-shore trough and low pressure systems formed over southeast Arabian Sea. It has also come out from the study that the orography of Goa plays an important role in rainfall distribution. Valpoi receives maximum rainfall due to its orographic effect.


Changing Climate is one of the most significant ecological issue, with the implications for agricultural production, water resource, energy and some other aspects of human well-being. Analysis of changing climate is important to assess climate-induced changes through the analysis of variability of climatic parameters such as temperature, precipitation, runoff and groundwater to suggest feasible adaptation strategies. This paper aims the long-term variability of rainfall and temperature using gridded daily data obtained from India Meteorological Department with 0.250 resolution from 1901-2016 for precipitation and 10 resolution from 1969-2005 for temperature (re-gridded to IMD 0.250 gridded location) in Ghataprabha sub basin (K3) of Krishna basin. The analysis of variability and trend in precipitation and temperature carried out by using coefficient of variation (CV), rainfall and temperature anomaly and also Mann-Kendall (MK) test was used to detect the time series trend. Statistical analysis of variability and trend in annual, Indian Summer Monsoon (ISMR) rainfall and temperature observed that i) there is an intra and inter annual variability of precipitation in the sub basin ii) test results revealed that the annual and ISMR trend appears to be increased by 0.12 & 0.14, iii) the Mann-Kendal trend test also analysed for annual minimum, mean and maximum temperature over the K3 sub basin (1969-2005) shows increasing trend by 0.06, 0.21 and 0.40. This analysis revealed that, there is an increasing trend in annual rainfall and temperature observed over the study region.


2021 ◽  
Author(s):  
Daniel Assefa ◽  
Mesfin Mengistu

Abstract BackgroundThe paper focus on time series trend and variability analysis of observed rainfall and temperature records from 16 stations during 1985-2015. ResultsBoth the summer and annual rainfall have an increasing trend but not statistically significant. Regards to variability, low to very high levels of variability were recorded according to the seasons and annual rainfall, whereas, moderate to extremely high levels of variability were observed. The result of the Mann Kendall test portrays that the mean minimum temperature was raised by 0.05 oC, while the maximum temperature was increased rose by 0.03 oC/30 years. The monthly maximum temperature also shows an increasing trend with the lowest record during August (22.05 oC) and the highest in the March (26.49 oC) except in the month of November and December. Similarly, an increasing trend was observed with a mean monthly minimum temperature with the lowest mean of 8.42Co in December and the highest mean of 11.12 oC recorded in April. Besides, a low level of variability was seen both in the case of minimum and maximum temperature were observed in all months. ConclusionsTherefore, since the observed trends of both temperature and total rainfall show abnormal shifts, there is an urgent need for policymakers to design systematic planning and management activities to rain-fed agriculture.


MAUSAM ◽  
2021 ◽  
Vol 47 (4) ◽  
pp. 339-348
Author(s):  
M. AMIRUL HUSSAIN ◽  
NAHID SULTANA

Monsoonal rainfall plays an important role in the annual rainfall distribution over Bangladesh. It is generally believed that monsoon depressions and cyclonic storms significantly affect the rainfall distribution over Bangladesh during the monsoon months and their absence causes deficient rainfall during the individual monsoon months. This aspect has been examined by computing the average rainfall for 32 meteorological observatories of Bangladesh Meteorological Department during the period 1948.91 for those monsoon months which were free from depressions and cyclonic storms. It has been found that the absence of monsoon depressions and cyclonic storms is not the main factor which causes deficient rainfall and consequent drought conditions in the individual monsoon months over different stations of the country. All the stations in the country experienced normal rainfall conditions inspite of the absence of depressions and cyclonic storms in the monsoon season (June-September).  


Climate ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 142
Author(s):  
Koffi Djaman ◽  
Komlan Koudahe ◽  
Ansoumana Bodian ◽  
Lamine Diop ◽  
Papa Malick Ndiaye

The objective of this study is to perform trend analysis in the historic data sets of annual and crop season [May–September] precipitation and daily maximum and minimum temperatures across the southwest United States. Eighteen ground-based weather stations were considered across the southwest United States for a total period from 1902 to 2017. The non-parametric Mann–Kendall test method was used for the significance of the trend analysis and the Sen’s slope estimator was used to derive the long-term average rates of change in the parameters. The results showed a decreasing trend in annual precipitation at 44.4% of the stations with the Sen’s slopes varying from −1.35 to −0.02 mm/year while the other stations showed an increasing trend. Crop season total precipitation showed non-significant variation at most of the stations except two stations in Arizona. Seventy-five percent of the stations showed increasing trend in annual maximum temperature at the rates that varied from 0.6 to 3.1 °C per century. Air cooling varied from 0.2 to 1.0 °C per century with dominant warming phenomenon at the regional scale of the southwest United States. Average annual minimum temperature had increased at 69% of the stations at the rates that varied from 0.1 to 8 °C over the last century, while the annual temperature amplitude showed a decreasing trend at 63% of stations. Crop season maximum temperature had significant increasing trend at 68.8% of the stations at the rates varying from 0.7 to 3.5 °C per century, while the season minimum temperature had increased at 75% of the stations.


Sign in / Sign up

Export Citation Format

Share Document