scholarly journals Machine Learning Approach to Decision Making for Insulin Initiation in Japanese Patients With Type 2 Diabetes (JDDM 58): Model Development and Validation Study (Preprint)

2020 ◽  
Author(s):  
Kazuya Fujihara ◽  
Yasuhiro Matsubayashi ◽  
Mayuko Harada Yamada ◽  
Masahiko Yamamoto ◽  
Toshihiro Iizuka ◽  
...  

BACKGROUND Applications of machine learning for the early detection of diseases for which a clear-cut diagnostic gold standard exists have been evaluated. However, little is known about the usefulness of machine learning approaches in the decision-making process for decisions such as insulin initiation by diabetes specialists for which no absolute standards exist in clinical settings. OBJECTIVE The objectives of this study were to examine the ability of machine learning models to predict insulin initiation by specialists and whether the machine learning approach could support decision making by general physicians for insulin initiation in patients with type 2 diabetes. METHODS Data from patients prescribed hypoglycemic agents from December 2009 to March 2015 were extracted from diabetes specialists’ registries, resulting in a sample size of 4860 patients who had received initial monotherapy with either insulin (n=293) or noninsulin (n=4567). Neural network output was insulin initiation ranging from 0 to 1 with a cutoff of >0.5 for the dichotomous classification. Accuracy, recall, and area under the receiver operating characteristic curve (AUC) were calculated to compare the ability of machine learning models to make decisions regarding insulin initiation to the decision-making ability of logistic regression and general physicians. By comparing the decision-making ability of machine learning and logistic regression to that of general physicians, 7 cases were chosen based on patient information as the gold standard based on the agreement of 8 of the 9 specialists. RESULTS The AUCs, accuracy, and recall of logistic regression were higher than those of machine learning (AUCs of 0.89-0.90 for logistic regression versus 0.67-0.74 for machine learning). When the examination was limited to cases receiving insulin, discrimination by machine learning was similar to that of logistic regression analysis (recall of 0.05-0.68 for logistic regression versus 0.11-0.52 for machine learning). Accuracies of logistic regression, a machine learning model (downsampling ratio of 1:8), and general physicians were 0.80, 0.70, and 0.66, respectively, for 43 randomly selected cases. For the 7 gold standard cases, the accuracies of logistic regression and the machine learning model were 1.00 and 0.86, respectively, with a downsampling ratio of 1:8, which were higher than the accuracy of general physicians (ie, 0.43). CONCLUSIONS Although we found no superior performance of machine learning over logistic regression, machine learning had higher accuracy in prediction of insulin initiation than general physicians, defined by diabetes specialists’ choice of the gold standard. Further study is needed before the use of machine learning–based decision support systems for insulin initiation can be incorporated into clinical practice.

10.2196/22148 ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. e22148
Author(s):  
Kazuya Fujihara ◽  
Yasuhiro Matsubayashi ◽  
Mayuko Harada Yamada ◽  
Masahiko Yamamoto ◽  
Toshihiro Iizuka ◽  
...  

Background Applications of machine learning for the early detection of diseases for which a clear-cut diagnostic gold standard exists have been evaluated. However, little is known about the usefulness of machine learning approaches in the decision-making process for decisions such as insulin initiation by diabetes specialists for which no absolute standards exist in clinical settings. Objective The objectives of this study were to examine the ability of machine learning models to predict insulin initiation by specialists and whether the machine learning approach could support decision making by general physicians for insulin initiation in patients with type 2 diabetes. Methods Data from patients prescribed hypoglycemic agents from December 2009 to March 2015 were extracted from diabetes specialists’ registries, resulting in a sample size of 4860 patients who had received initial monotherapy with either insulin (n=293) or noninsulin (n=4567). Neural network output was insulin initiation ranging from 0 to 1 with a cutoff of >0.5 for the dichotomous classification. Accuracy, recall, and area under the receiver operating characteristic curve (AUC) were calculated to compare the ability of machine learning models to make decisions regarding insulin initiation to the decision-making ability of logistic regression and general physicians. By comparing the decision-making ability of machine learning and logistic regression to that of general physicians, 7 cases were chosen based on patient information as the gold standard based on the agreement of 8 of the 9 specialists. Results The AUCs, accuracy, and recall of logistic regression were higher than those of machine learning (AUCs of 0.89-0.90 for logistic regression versus 0.67-0.74 for machine learning). When the examination was limited to cases receiving insulin, discrimination by machine learning was similar to that of logistic regression analysis (recall of 0.05-0.68 for logistic regression versus 0.11-0.52 for machine learning). Accuracies of logistic regression, a machine learning model (downsampling ratio of 1:8), and general physicians were 0.80, 0.70, and 0.66, respectively, for 43 randomly selected cases. For the 7 gold standard cases, the accuracies of logistic regression and the machine learning model were 1.00 and 0.86, respectively, with a downsampling ratio of 1:8, which were higher than the accuracy of general physicians (ie, 0.43). Conclusions Although we found no superior performance of machine learning over logistic regression, machine learning had higher accuracy in prediction of insulin initiation than general physicians, defined by diabetes specialists’ choice of the gold standard. Further study is needed before the use of machine learning–based decision support systems for insulin initiation can be incorporated into clinical practice.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


2016 ◽  
Vol 11 (4) ◽  
pp. 791-799 ◽  
Author(s):  
Rina Kagawa ◽  
Yoshimasa Kawazoe ◽  
Yusuke Ida ◽  
Emiko Shinohara ◽  
Katsuya Tanaka ◽  
...  

Background: Phenotyping is an automated technique that can be used to distinguish patients based on electronic health records. To improve the quality of medical care and advance type 2 diabetes mellitus (T2DM) research, the demand for T2DM phenotyping has been increasing. Some existing phenotyping algorithms are not sufficiently accurate for screening or identifying clinical research subjects. Objective: We propose a practical phenotyping framework using both expert knowledge and a machine learning approach to develop 2 phenotyping algorithms: one is for screening; the other is for identifying research subjects. Methods: We employ expert knowledge as rules to exclude obvious control patients and machine learning to increase accuracy for complicated patients. We developed phenotyping algorithms on the basis of our framework and performed binary classification to determine whether a patient has T2DM. To facilitate development of practical phenotyping algorithms, this study introduces new evaluation metrics: area under the precision-sensitivity curve (AUPS) with a high sensitivity and AUPS with a high positive predictive value. Results: The proposed phenotyping algorithms based on our framework show higher performance than baseline algorithms. Our proposed framework can be used to develop 2 types of phenotyping algorithms depending on the tuning approach: one for screening, the other for identifying research subjects. Conclusions: We develop a novel phenotyping framework that can be easily implemented on the basis of proper evaluation metrics, which are in accordance with users’ objectives. The phenotyping algorithms based on our framework are useful for extraction of T2DM patients in retrospective studies.


Author(s):  
Muhammad Younus ◽  
Md Tahsir Ahmed Munna ◽  
Mirza Mohtashim Alam ◽  
Shaikh Muhammad Allayear ◽  
Sheikh Joly Ferdous Ara

AITI ◽  
2020 ◽  
Vol 17 (1) ◽  
pp. 42-55
Author(s):  
Radius Tanone ◽  
Arnold B Emmanuel

Bank XYZ is one of the banks in Kupang City, East Nusa Tenggara Province which has several ATM machines and is placed in several merchant locations. The existing ATM machine is one of the goals of customers and non-customers in conducting transactions at the ATM machine. The placement of the ATM machines sometimes makes the machine not used optimally by the customer to transact, causing the disposal of machine resources and a condition called Not Operational Transaction (NOP). With the data consisting of several independent variables with numeric types, it is necessary to know how the classification of the dependent variable is NOP. Machine learning approach with Logistic Regression method is the solution in doing this classification. Some research steps are carried out by collecting data, analyzing using machine learning using python programming and writing reports. The results obtained with this machine learning approach is the resulting prediction value of 0.507 for its classification. This means that in the future XYZ Bank can classify NOP conditions based on the behavior of customers or non-customers in making transactions using Bank XYZ ATM machines.  


Sign in / Sign up

Export Citation Format

Share Document