scholarly journals ENVIRONMENTAL DEPENDENCE OF AGE, STELLAR MASS, STAR FORMATION RATE AND STELLAR VELOCITY DISPERSION OF ACTIVE GALACTIC NUCLEUS HOST GALAXIES

2021 ◽  
Vol 57 (1) ◽  
pp. 157-166
Author(s):  
Xin-Fa Deng ◽  
Xiao-Qing Wen

Using the apparent-magnitude limited active galactic nucleus (AGN) host galaxy sample of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12), we investigate the environmental dependence of age, stellar mass, the star formation rate (SFR) and stellar velocity dispersion of AGN host galaxies. We divide the whole apparent-magnitude limited AGN sample into many subsamples with a redshift binning size of Δz = 0.01, and analyse the environmental dependence of these galaxy properties of subsamples in each redshift bin. It turns out that these parameters of AGN host galaxies seemingly only have a weak environmental dependence.

2013 ◽  
Vol 434 (1) ◽  
pp. 423-436 ◽  
Author(s):  
Yusei Koyama ◽  
Ian Smail ◽  
Jaron Kurk ◽  
James E. Geach ◽  
David Sobral ◽  
...  

2018 ◽  
Vol 14 (S346) ◽  
pp. 247-251
Author(s):  
Konstantinos Kovlakas ◽  
Andreas Zezas ◽  
Jeff J. Andrews ◽  
Antara Basu-Zych ◽  
Tassos Fragos ◽  
...  

Abstract. The nature and evolution of ultraluminous X-ray sources (ULXs) is an open problem in astrophysics. They challenge our current understanding of stellar compact objects and accretion physics. The recent discovery of pulsar ULXs further demonstrates the importance of this intriguing and rare class of objects.In order to overcome the difficulties of directly studying the optical associations of ULXs, we generally resort in statistical studies of the stellar properties of their host galaxies. We present the largest such study based on the combination of Chandra archival data with the most complete galaxy catalog of the Local Universe. Incorporating robust distances and stellar population parameters based on associated multi-wavelength information, and we explore the association of ULXs with galaxies in the (star formation rate, stellar mass, metallicity) space.We confirm the known correlation with morphology, star formation rate and stellar mass, while we find an excess of ULXs in dwarf galaxies, indicating dependence on age and metallicity.


2018 ◽  
Vol 613 ◽  
pp. A72 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
M. Cirasuolo ◽  
O. J. Turner ◽  
...  

We present results from the KMOS LENsing Survey (KLENS), which is exploiting gravitational lensing to study the kinematics of 24 star-forming galaxies at 1.4 < z < 3.5 with a median mass of log(M⋆∕M⊙) = 9.6 and a median star formation rate (SFR) of 7.5 M⊙ yr−1. We find that 25% of these low mass/low SFR galaxies are rotation-dominated, while the majority of our sample shows no velocity gradient. When combining our data with other surveys, we find that the fraction of rotation-dominated galaxies increases with the stellar mass, and decreases for galaxies with a positive offset from the main sequence (higher specific star formation rate). We also investigate the evolution of the intrinsic velocity dispersion, σ0, as a function of the redshift, z, and stellar mass, M⋆, assuming galaxies in quasi-equilibrium (Toomre Q parameter equal to 1). From the z − σ0 relation, we find that the redshift evolution of the velocity dispersion is mostly expected for massive galaxies (log(M⋆∕M⊙) > 10). We derive a M⋆ − σ0 relation, using the Tully–Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0 < z < 3.5 appear to follow this relation, except at higher redshift (z > 2), where we observe higher velocity dispersions for low masses (log(M⋆∕M⊙) ~ 9.6) and lower velocity dispersions for high masses (log(M⋆∕M⊙) ~ 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high redshift do not satisfy the stability criterion, or that the adopted parametrization of the specific star formation rate and molecular properties fail at high redshift.


2019 ◽  
Vol 491 (3) ◽  
pp. 3419-3434 ◽  
Author(s):  
M Celeste Artale ◽  
Michela Mapelli ◽  
Yann Bouffanais ◽  
Nicola Giacobbo ◽  
Mario Pasquato ◽  
...  

ABSTRACT We investigate the properties of the host galaxies of compact binary mergers across cosmic time, by means of population-synthesis simulations combined with galaxy catalogues from the eagle suite. We analyse the merger rate per galaxy of binary neutron stars (BNSs), black hole–neutron star binaries (BHNSs), and binary black holes (BBHs) from redshift zero up to six. The binary merger rate per galaxy strongly correlates with the stellar mass of the host galaxy at any redshift considered here. This correlation is significantly steeper for BNSs than for both BHNSs and BBHs. Moreover, we find that the merger rate per galaxy depends also on host galaxy’s star formation rate (SFR) and metallicity. We derive a robust fitting formula that relates the merger rate per galaxy with galaxy’s SFR, stellar mass, and metallicity at different redshifts. The typical masses of the host galaxies increase significantly as redshift decreases, as a consequence of the interplay between delay time distribution of compact binaries and cosmic assembly of galaxies. Finally, we study the evolution of the merger rate density with redshift. At low redshift (z ≤ 0.1) early-type galaxies give a larger contribution to the merger rate density than late-type galaxies. This trend reverts at z ≥ 1.


2020 ◽  
Vol 495 (2) ◽  
pp. 1958-1977 ◽  
Author(s):  
Bitao Wang ◽  
Michele Cappellari ◽  
Yingjie Peng ◽  
Mark Graham

ABSTRACT We study the link between the kinematic-morphology of galaxies, as inferred from integral-field stellar kinematics, and their relation between mass and star formation rate. Our sample consists of ∼3200 galaxies with integral-field spectroscopic data from the MaNGA survey (Mapping Nearby Galaxies at Apache Point Observatory) with available determinations of their effective stellar angular momentum within the half-light radius $\lambda _{R_e}$. We find that for star-forming galaxies, namely along the star formation main sequence (SFMS), the $\lambda _{R_e}$ values remain large and almost unchanged over about two orders of magnitude in stellar mass, with the exception of the lowest masses $\mathcal {M}_{\star }\lesssim 2\times 10^{9} \, \mathcal {M}_{\odot }$, where $\lambda _{R_e}$ slightly decreases. The SFMS is dominated by spiral galaxies with small bulges. Below the SFMS, but above the characteristic stellar mass $\mathcal {M}_{\rm crit}\approx 2\times 10^{11} \, \mathcal {M}_{\odot }$, there is a sharp decrease in $\lambda _{R_e}$ with decreasing star formation rate (SFR): massive galaxies well below the SFMS are mainly slow-rotator early-type galaxies, namely genuinely spheroidal galaxies without discs. Below the SFMS and below $\mathcal {M}_{\rm crit}$ the decrease of $\lambda _{R_e}$ with decreasing SFR becomes modest or nearly absent: low-mass galaxies well below the SFMS, are fast-rotator early-type galaxies, and contain fast-rotating stellar discs like their star-forming counterparts. We also find a small but clear environmental dependence for the massive galaxies: in the mass range $10^{10.9}\!-\!10^{11.5} \, \mathcal {M}_{\odot }$, galaxies in rich groups or denser regions or classified as central galaxies have lower values of $\lambda _{R_e}$. While no environmental dependence is found for galaxies of lower mass. We discuss how the above results can be understood as due to the different star formation and mass assembly histories of galaxies with varying mass.


2011 ◽  
Vol 727 (2) ◽  
pp. 83 ◽  
Author(s):  
Lorenzo Moncelsi ◽  
Peter A. R. Ade ◽  
Edward L. Chapin ◽  
Luca Cortese ◽  
Mark J. Devlin ◽  
...  

2019 ◽  
Vol 15 (S356) ◽  
pp. 295-298
Author(s):  
Betelehem Bilata-Woldeyes ◽  
Mirjana Pović ◽  
Zeleke Beyoro-Amado ◽  
Tilahun Getachew-Woreta ◽  
Shimeles Terefe

AbstractStudying the morphology of a large sample of active galaxies at different wavelengths and comparing it with active galactic nuclei (AGN) properties, such as black hole mass (MBH) and Eddington ratio (λEdd), can help us in understanding better the connection between AGN and their host galaxies and the role of nuclear activity in galaxy formation and evolution. By using the BAT-SWIFT hard X-ray public data and by extracting those parameters measured for AGN and by using other public catalogues for parameters such as stellar mass (M*), star formation rate (SFR), bolometric luminosity (Lbol), etc., we studied the multiwavelength morphological properties of host galaxies of ultra-hard X-ray detected AGN and their correlation with other AGN properties. We found that ultra hard X-ray detected AGN can be hosted by all morphological types, but in larger fractions (42%) they seem to be hosted by spirals in optical, to be quiet in radio, and to have compact morphologies in X-rays. When comparing morphologies with other galaxy properties, we found that ultra hard X-ray detected AGN follow previously obtained relations. On the SFR vs. stellar mass diagram, we found that although the majority of sources are located below the main sequence (MS) of star formation (SF), still non-negligible number of sources, with diverse morphologies, is located on and/or above the MS, suggesting that AGN feedback might have more complex influence on the SF in galaxies than simply quenching it, as it was suggested in some of previous studies.


Sign in / Sign up

Export Citation Format

Share Document