scholarly journals How much water can bioretention retain, and where does it go?

Author(s):  
Sylvie Spraakman ◽  
Jean-Luc Martel ◽  
Jennifer Drake

Bioretention is a type of green stormwater infrastructure for the urban environment that mimics a natural hydrologic system by reducing peak flows and runoff volumes and encouraging infiltration and evapotranspiration. This study examines the complete water balance of a bioretention system located in Vaughan, Ontario, Canada, between 2018 and 2019. The water balance was further broken down by event size, where the event size was determined by rainfall frequency analysis. Recharge was the largest component of the water balance overall (86 % of inflow), as well as by event size. Evapotranspiration was the next largest water balance component (7 % of inflow overall), and was a significant component of inflow (21 %) when considering only small events (50 % probability of recurrence). Evapotranspiration is a slow but consistent process, averaging 2.3 mm/day overall and 2.9 mm/day during the growing season. Climate change is likely to bring more wet days and higher temperatures, which will impact the bioretention water balance by increasing evapotranspiration and inflow. Design standards for retention targets should be updated based on the most recent rainfall frequency analyses to adjust for changing climate conditions.

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 416
Author(s):  
Barbara Jagosz ◽  
Stanisław Rolbiecki ◽  
Roman Rolbiecki ◽  
Ariel Łangowski ◽  
Hicran A. Sadan ◽  
...  

Climate warming increases the water needs of plants. The aim of this study was to estimate the water needs of grapevines in central Poland. Water needs were calculated using the crop coefficients method. Reference evapotranspiration was assessed by the Blaney–Criddle’s equation, modified for climate conditions in Poland. Crop coefficients were assumed according to the Doorenbos and Pruitt method. Water needs were calculated using the data from four meteorological stations. Rainfall deficit with the probability occurrence of normal years, medium dry years, and very dry years was determined by the Ostromęcki’s method. Water needs of grapevines during the average growing season were estimated at 438 mm. Upward time trend in the water needs both in the period of May–October and June–August was estimated. Temporal variability in the water needs was significant for all of the provinces. These changes were mainly impacted by a significant increasing tendency in mean air temperature and less by precipitation totals that did not show a clear changing tendency. Due to climate change, vineyards will require irrigation in the near future. The use of resource-efficient irrigation requires a precise estimate of the grapevines’ water needs. The study identified the water requirements for grapevines in central Poland.


Author(s):  
Youssef Brouziyne ◽  
Lahcen Benaabidate ◽  
Aziz Abouabdillah ◽  
Rachid Bouabid ◽  
Abdelghani Chehbouni

Abstract. Precipitation changes and water use patterns are two factors affecting the water quantity; obviously, hydrologic processes are always linked to many elements in the watershed scale, so to understand water management issues it is fundamental to analyze the different elements of hydrologic processes occurring in the watershed. In this study, the “SWAT” model (Soil and Water Assessment Tool) has been used to simulate the water balance for the present climate conditions on a semi arid watershed located in the central North of Morocco (R'dom). The study watershed covers an area of 1993 km2, and is hosting farming, pasture and forestry related activities. The water stress situation in the R'dom watershed can be summarized as limited resource facing increasing water demand. SWAT model was first run and calibrated under current climate; and was driven with downscaled climate simulations to generate future hydrological projections for R'dom watershed in the 2031 to 2050 horizon under two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The results of the study showed that the water balance in R'dom watershed is dominated by evapotranspiration and the water resources distribution within the watershed is uneven and follows a decreasing gradient matching the flow direction. The main results of climate change scenarios showed that R'dom watershed will undergo significant decrease of water resources availability with more economic impact under the scenario RCP8.5 as all areas hosting the economical activities will be affected and the highest changes of water yield should be under this scenario.


2020 ◽  
Author(s):  
Jitka Kofroňová ◽  
Václav Šípek ◽  
Miroslav Tesař

<p>The accurate estimation of the potential evapotranspiration (PET) is one of the key processes for water balance research and for determination of actual evapotranspiration (AET). The rate of PET is primarily affected by the amount of available water, climate conditions and surface characteristics. One of the main controlling factors is the radiation balance. Both shortwave and longwave radiations significantly influence the rate of PET. Since the longwave radiation is rarely measured, it has been computed. The computing approaches include several coefficients connected to specific climate conditions. The accuracy of original set of coefficients is questionable when applied in different sites. Here we present potential systematic error in estimating PET while using modelled longwave radiation. In our study, the use of original coefficient values in calculated longwave radiation resulted in differences from 20 to 80 mm of PET in the growing season. It decreased to less than 20 mm per season after parameter calibration.</p><p>Interception describes the amount of water captured by vegetation. Captured water often evaporates back to the atmosphere, thus it doesn’t participate in surface runoff or infiltration of water to the soil. Therefore the rate of interception loss hasn’t an impact only on evaporation but also on other components of water balance. As the interception is often neglected, we decided to compare observed and modelled values of interception loss. Five different modelling approaches were selected and discussed against measured values. Resulting interception loss differences were in range from 1 to 60 mm per growing season. The differences in the rate of interception led to overall variations in predictions of discharge, groundwater height and soil moisture content modelled by HBV model.</p>


2019 ◽  
Vol 49 (8) ◽  
pp. 986-993 ◽  
Author(s):  
David C. LeBlanc ◽  
Adam M. Berland

Dendroecology provides a means to evaluate how mature trees have responded to climate stresses in the recent past and provides one approach for projecting how existing forests will respond to future climate change. This study documented spatial variation in the strength of growth–climate associations for six oak (Quercus) species at 284 sites in eastern North America that span substantial gradients of temperature and site water balance. Radial growth of oaks was more strongly related to growing-season precipitation and the ratio of precipitation to potential evapotranspiration at sites in the western part of the study region where drought conditions occur more frequently. Growth was more strongly related to growing-season mean maximum temperature in the warmer, southern part of the study region. Growth of oaks was not strongly related to site water balance or temperature in the northeastern part of the study region. These results indicate that if climate change results in increased growing-season drought stress, this will adversely affect mature oak trees growing in the southern and western parts of eastern North America, but oaks growing in northeastern North America have more safe space for change before they will suffer reduced growth and vigor.


2012 ◽  
Vol 32 ◽  
pp. 49-53 ◽  
Author(s):  
I. Pohle ◽  
H. Koch ◽  
U. Grünewald

Abstract. Lusatia is considered one of the driest regions of Germany. The climatic water balance is negative even under current climate conditions. Due to global climate change, increased temperatures and a shift of precipitation from summer to winter are expected. Therefore, it is of major interest whether the excess water in winter can be stored and to which extent it is used up on increasing evapotranspiration. Thus, this study focuses on estimating potential climate change impacts on the water balance of two subcatchments of the River Spree using the Soil and Water Integrated Model (SWIM). Climate input was taken from 100 realisations each of two scenarios of the STatistical Analogue Resampling scheme STAR assuming a further temperature increase of 0 K (scenario A) and 2 K by the year 2055 (scenario B) respectively. Resulting from increased temperatures and a shift in precipitation from summer to winter actual evapotranspiration is supposed to increase in winter and early spring, but to decrease in later spring and early summer. This is less pronounced for scenario A than for scenario B. Consequently, also the decrease in discharge and groundwater recharge in late spring is lower for scenario A than for scenario B. The highest differences of runoff generation and groundwater recharge between the two scenarios but also the highest ranges within the scenarios occur in summer and early autumn. It is planned to estimate potential climate change for the catchments of Spree, Schwarze Elster and Lusatian Neisse.


Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 87
Author(s):  
Timothy R. Seastedt ◽  
Meagan Oldfather

The populations, species, and communities in high elevation mountainous regions at or above tree line are being impacted by the changing climate. Mountain systems have been recognized as both resilient and extremely threatened by climate change, requiring a more nuanced understanding of potential trajectories of the biotic communities. For high elevation systems in particular, we need to consider how the interactions among climate drivers and topography currently structure the diversity, species composition, and life-history strategies of these communities. Further, predicting biotic responses to changing climate requires knowledge of intra- and inter-specific climate associations within the context of topographically heterogenous landscapes. Changes in temperature, snow, and rain characteristics at regional scales are amplified or attenuated by slope, aspect, and wind patterns occurring at local scales that are often under a hectare or even a meter in extent. Community assemblages are structured by the soil moisture and growing season duration at these local sites, and directional climate change has the potential to alter these two drivers together, independently, or in opposition to one another due to local, intervening variables. Changes threaten species whose water and growing season duration requirements are locally extirpated or species who may be outcompeted by nearby faster-growing, warmer/drier adapted species. However, barring non-analogue climate conditions, species may also be able to more easily track required resource regimes in topographically heterogenous landscapes. New species arrivals composed of competitors, predators and pathogens can further mediate the direct impacts of the changing climate. Plants are moving uphill, demonstrating primary succession with the emergence of new habitats from snow and rock, but these shifts are constrained over the short term by soil limitations and microbes and ultimately by the lack of colonizable terrestrial surfaces. Meanwhile, both subalpine herbaceous and woody species pose threats to more cold-adapted species. Overall, the multiple interacting direct and indirect effects of the changing climate on high elevation systems may lead to multiple potential trajectories for these systems.


2020 ◽  
Vol 51 (5) ◽  
pp. 1023-1035
Author(s):  
Junfang Liu ◽  
Baolin Xue ◽  
Yinglan A ◽  
Wenchao Sun ◽  
Qingchun Guo

Abstract Projected climate change will have a profound effect on the hydrological balance of river basins globally. Studying water balance modification under changing climate conditions is significant for future river basin management, especially in certain arid and semiarid areas. In this study, we evaluated water balance changes (1981–2011) in the upper Hailar River Basin on the Mongolian Plateau. To evaluate the hydrological resilience of the basin to climate change, we calculated two Budyko metrics, i.e. dynamic deviation (d) and elasticity (e). The absolute magnitude of d reflects the ability of a basin to resist the influence of climate change and maintain its stable ecological function, whereas parameter e is used to assess whether a basin is hydrologically elastic. Results revealed modification of the hydrological balance during the study period has manifested as a decreasing trend of runoff and runoff-precipitation ratio. Correspondingly, basin-averaged evapotranspiration has also shown a decreasing trend, attributable mainly to precipitation. Furthermore, the calculated elasticity (e = 8.03) suggests the basin has high hydrological resilience, which indicates the basin ecosystem may maintain its hydrological function to a certain extent under a changing climate. The results of this study could assist water resource management in the study area and the prediction of ecosystem response to future climate change.


Author(s):  
С.М. Авдеев ◽  
Н.Н. Лазарев

Приводятся данные о биоклиматическом потенциале (БКП) Пермского края, его составляющих, а также динамика изменения БКП за периоды 1970–1999 и 2000–2014 годов. На основании данных 17 метеостанций рассчитаны показатели биологической продуктивности земель, приводится районирование территории, анализируется теплообеспеченность вегетационного периода каждой выделенной зоны в ходе районирования. Пространственная оценка современных климатических условий показала, что на территории края прослеживается сильная изменчивость агрометеорологических характеристик в направлении с юго-запада на северо-восток. Продолжительность периодов с температурами выше 0; 5 и 10°С достаточно сильно колеблется по территории края — в пределах 200–223, 156–180 и 107–146 дней соответственно. Различия в обеспеченности теплом между северными и южными районами составляют порядка 500–700°С по суммам температур выше 10°С и 25–30 дней — по продолжительности периода активной вегетации. В целом территория Пермского края в настоящее время характеризуется удовлетворительными и хорошими агрометеорологическими условиями. Климатический индекс биологической продуктивности к концу исследуемого периода имеет тенденцию к возрастанию абсолютно во всех районах. Большинство районов входят в ареал средней биологической продуктивности со значением показателя 106–120 баллов. Сравнивая климатические показатели, составляющие БКП, за первый и второй периоды можно говорить о том, что в большей степени изменения коснулись сумм активных температур выше 10°С и количества осадков: среднее значение увеличилось на 139°С, количество осадков тоже увеличилось в среднем на 42 мм. Климатические условия этой территории могут обеспечить урожайность зерновых культур 2,4–2,8 т/га. Увеличиваются площади территорий с более благоприятными условиями климата для возделывания зерновых культур, а также сортов люцерны изменчивой северного экотипа. The article reports on farming potential of the Perm Territory and its dynamics for the periods of 1970–1999 and 2000–2014. Parameters of soil fertility were estimated on the base of the data obtained from 17 meteorological stations. The report reviews land improvement and climate conditions of growing seasons of each zone. Weather conditions change significantly from the southwest to the northeast. The length of periods with temperatures above 0; 5 and 10°С varies within 200–223, 156–180 and 107–146 days around the region. Differences in accumulated temperatures above 10°С amount to 500–700°С between the northern and southern regions, in the duration of active growing season — 25–30 days. The Perm Territory has moderate conditions for farming. Biological productivity tends to grow by the end of the period studied in all the zones. Most regions have average biological productivity. Sum of active temperatures above 10°С increased by 139°С from the first to the second periods as well as the amount of precipitations — by 42 mm. The climate of the Perm Territory provides grain crop yield of 2.4–2.8 t ha-1. Lands with optimal condition for grain crop cultivation grow as well as for farming of northern ecotypes of bastard alfalfa.


Author(s):  
Oksana Sadkovskaya

One of major factors of deterioration in a microclimate of urban development in the conditions of the Rostov region, is degradation of landscapes owing to violation of water balance of the territory. In article the main reasons for violation of water balance which included natural features of the region, a consequence of anthropogenic influence, climatic changes, etc. are considered. Examples from the world practice of urban planning, which show the relevance and effectiveness of compensation for the effects of anthropogenic im-pacts and climate change using planning methods, are given. The experience of the United States, the Nether-lands, Canada and other countries that use water-saving technologies in planning is considered. The rela-tionship of urban planning and the formation of sustainable urban landscapes is shown. The integration of water-saving technologies into the urban environment can be a means of optimizing landscapes and a means of creating unique urban spaces. Reclamation of the urban landscape of low-rise buildings is a necessary step in creating a modern and comfortable urban environment in the conditions of the Rostov region. Meth-ods are proposed to compensate for negative changes in urban landscapes that can be applied at the stage of urban planning. As well as the proposed methods can be applied in the reconstruction of urban low-rise buildings. The considered methods concern not only urban landscapes, but also agricultural landscapes that surround small and medium-sized cities of the Rostov region. In article the author's concept of the organiza-tion of the low housing estate on a basis Urban- facies is submitted. Planning methods of regulation of water balance of the territory on the basis of models the ecological protective of landscapes are offered: an ecolog-ical core, an ecological corridor and an ecological barrier and also analogs from town-planning practice are considered. The reclamation of urban landscapes based on urban planning methods for regulating the water balance of the territory will allow creating unique urban spaces that are resistant to local climatic conditions and the possible consequences of climate change.


Sign in / Sign up

Export Citation Format

Share Document