scholarly journals Physical properties of oleogels fabricated by the combination of diacylglycerols and monoacylglycerols

Author(s):  
Xiaochen Wang ◽  
Da Ma ◽  
Yingwei Liu ◽  
Ying Wang ◽  
Chaoying Qiu ◽  
...  

Oleogelation is an efficient way to structure oil and reduce saturated fatty acids of lipid products. Multi-component gels are of particularly interest attributed to the ability to tune gel properties by alteration of the component proportions. In this study, monoacylglycerol (MAG) and diacylglycerol (DAG) are used as gelator mixture and the influence of the ratio of these two crystalline particles on the characteristics of oleogels was investigated. The crystallization and melting behavior, solid fat content (SFC), crystal morphology, polymorphism and mechanical properties of the oleogels were characterized. The oleogels with higher gelator level displayed higher oil binding ability and shorter crystal formation time. The oleogels with higher MAG ratio exhibited more blade-like crystals, and the mixed oleogels with MAG: DAG of 3:7 and 5:5 showed altered crystal morphology with finer crystal size and reduced crystallization enthalpies possibly due to the increased nucleation seeds promoted by MAG. The oleogels with high MAG level showed lower equilibrium SFC during isothermal crystallization but faster crystallization rate, higher hardness and elasticity. Therefore, by changing the ratio of DAG with MAG, the crystallization profile and rheological properties of oleogels can be tailored and used as traditional solid fat substitutes in lipid-based products.

1959 ◽  
Vol 26 (1) ◽  
pp. 17-23 ◽  
Author(s):  
J. M. De Man ◽  
F. W. Wood

The melting dilation of butterfat between 10° and 30° C. has been determined from results obtained for the thermal expansion of solid and liquid butterfat. Measurement of the solid fat percentages obtained with different cooling treatments showed that at higher rates of cooling there was an increase in the solid fat content, which is in accordance with the theory of mixed crystal formation. A cooling rate existed beyond which no further increase in solid fat content took place, since butterfat cooled by immersion in a 5° C. water-bath had practically the same solids content as it had when cooled in a 0° C. water-bath. Differences in cooling rate changed the solid fat content mainly in the region of lower melting-point glycerides. Seasonal variations in solid fat content indicated relatively large differences in the content of higher melting glycerides. There is an indication that not only the quantity of solid fat, but also the composition of the crystals is important as a factor influencing the hardness of butter. It was possible to recrystallize mixed crystals in butterfat at 22·5° C. and thereby lower the solid fat content of the butterfat.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3231
Author(s):  
Jihyun Hwang ◽  
Heeju Jun ◽  
Seoye Roh ◽  
Seong Jae Lee ◽  
Jeong Min Mun ◽  
...  

Herein, we prepared 1,3-dipalmitoyl-2-oleoyl glycerol (POP)-rich fats with reduced levels of diacylglycerols (DAGs), adversely affecting the tempering of chocolate, via two-step hexane fractionation of palm stearin. DAG content in the as-prepared fats was lower than that in POP-rich fats obtained by previously reported conventional two-step acetone fractionation. Cocoa butter equivalents (CBEs) were fabricated by blending the as-prepared fats with 1,3-distearoyl-2-oleoyl glycerol (SOS)-rich fats obtained by hexane fractionation of degummed shea butter. POP-rich fats achieved under the best conditions for the fractionation of palm stearin had a significantly lower DAG content (1.6 w/w%) than that in the counterpart (4.6 w/w%) prepared by the previously reported method. The CBEs fabricated by blending the POP- and SOS-rich fats in a weight ratio of 40:60 contained 63.7 w/w% total symmetric monounsaturated triacylglycerols, including 22.0 w/w% POP, 8.6 w/w% palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol, 33.1 w/w% SOS, and 1.3 w/w% DAGs, which was not substantially different from the DAG content in cocoa butter (1.1 w/w%). Based on the solid-fat content results, it was concluded that, when these CBEs were used for chocolate manufacture, they blended with cocoa butter at levels up to 40 w/w%, without distinctively altering the hardness and melting behavior of cocoa butter.


2012 ◽  
Vol 9 (3) ◽  
pp. 1569-1574 ◽  
Author(s):  
Yan-Hua Cai

Crystallization and melting behavior of Poly(L-lactic acid)(PLLA)/Talc composites with different talc content were investigated in detail. The addition of talc can increase the overall crystallization rate of PLLA, 5%talc makes the melt-crystallization peak temperature of PLLA increase from 96.28 °C to 105.22 °C, and the crystallization enthalpy increases from 1.379 J•g-1to 28.99 J•g-1. The melting behavior of PLLA/5%talc composites at a different heating rate during non-isothermal crystallization at different cooling rate shows that heating rate can affect the melting behavior of PLLA, with increasing of heating rate, the double melting peak degenerates to single melting peak. Melting behavior after isothermal crystallization and after cold isothermal crystallization and hot isothermal crystallization indicates that the double-melting peak of PLLA/5%talc composites results from melting-recrystallization.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 364
Author(s):  
M. Jesús Fernández ◽  
M. Dolores Fernández

In clay/polymer nanocomposites, the crystallization behavior and kinetics of the polymer can be affected by the presence of clay, its content and the degree of miscibility between the clay and the polymer matrix. The effect of two different organomodified vermiculites on the non-isothermal cold crystallization and melting behavior of polylactide (PLA) was studied by differential scanning calorimetry (DSC). In the presence of vermiculites, the cold crystallization of PLA occurred earlier, particularly for the highest content of the most miscible organovermiculite with PLA. The cold crystallinity of PLA decreased at low heating rates, notably at high organoclay loadings, and increased at high heating rates, especially at low vermiculite contents. According to the crystallization half-time, crystallization rate coefficient (CRC), and crystallization rate parameter (CRP) approaches, the cold crystallization rate of PLA increased by incorporating vermiculites, with the effect being most noteworthy for the vermiculite showing better compatibility. The Mo model was successful in describing the non-isothermal cold crystallization kinetics of the PLA/vermiculite composites. The melting behavior was affected by the heating rate and the type and content of clay. The nucleating effect of the most compatible clay resulted in the less perfect crystallites. The activation energy was evaluated using the Kissinger and Takhor methods.


2011 ◽  
Vol 233-235 ◽  
pp. 2413-2418 ◽  
Author(s):  
Nai Xu ◽  
Li Sha Pan ◽  
Ling Bin Lu ◽  
Su Juan Pang ◽  
Qiang Lin

The crystalline structure, morphology, and nonisothermal crystallization and melting behavior of isotactic polypropylene (iPP) with and without a novel nucleating agent containing amide group (TMC-328) were investigated with differential scanning calorimetric (DSC), polarized optical microscopy (POM) and X-ray diffraction (XRD). TMC-328 could increase the crystallization temperature and accelerate the crystallization rate of iPP. As an efficient α-form nucleating agent, the addition of TMC-328 could obviously reduce the spherulite size of iPP. There is a critical concentration of TMC-328. When the content of TMC-328 is 0.1%, iPP matrix exhibits the maximum crystallization peak temperature (123 °C) and the maximum crystallinity of 45.0%. With the content of TMC-328 increasing, crystallinity of iPP matrix decreases obviously. XRD measurements indicate that the crystal structure of the α-form of iPP is unaffected by TMC-328.


2017 ◽  
Vol 37 (8) ◽  
pp. 747-755 ◽  
Author(s):  
Zhiyuan Shen ◽  
Faliang Luo ◽  
Jianghua Du ◽  
Xiaomei Lei ◽  
Lijie Ji

Abstract The blends of poly (butylene terephthalate) (PBT) and 4,4′-dihydroxyphenyl (DHP) were prepared by melt blending, and the effects of DHP on the crystallization and melting behaviors of PBT were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and polarized optical microscopy (POM). The results showed that crystallization temperature and crystallinity of PBT apparently decreased with the addition of DHP. A remarkably decline in crystallization rate of PBT was achieved, and the blends had higher σe and q values than that of pure PBT as analyzed based on the Avrami equation and Lauritzen-Hoffman equation. The crystal structure of PBT did not change by the addition of DHP, while the spherulite size of PBT decreased.


Sign in / Sign up

Export Citation Format

Share Document