scholarly journals Investigation into the effect of different fuels on ignition delay of M-type diesel combustion process

2008 ◽  
Vol 12 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Dzevad Bibic ◽  
Ivan Filipovic ◽  
Ales Hribernik ◽  
Boran Pikula

An ignition delay is a very complex process which depends on a great number of parameters. In practice, definition of the ignition delay is based on the use of correlation expressions. However, the correlation expressions have very often limited application field. This paper presents a new correlation which has been developed during the research project on the direct injection M-type diesel engine using both the diesel and biodiesel fuel, as well as different values of a static injection timing. A dynamic start of injection, as well as the ignition delay, is defined in two ways. The first approach is based on measurement of a needle lift, while the second is based on measurement of a fuel pressure before the injector. The latter approach requires calculation of pressure signals delay through the fuel injection system and the variation of a static advance injection angle changing. The start of a combustion and the end of the ignition delay is defined on the basis of measurements of an in-cylinder pressure and its point of separation from a skip-fire pressure trace. The developed correlation gives better prediction of the ignition delay definition for the M-type direct injection diesel engine in the case of diesel and biodiesel fuel use when compared with the classic expression by the other authors available in the literature.

2013 ◽  
Vol 388 ◽  
pp. 217-222
Author(s):  
Mohamed Mustafa Ali ◽  
Sabir Mohamed Salih

Compression Ignition Diesel Engine use Diesel as conventional fuel. This has proven to be the most economical source of prime mover in medium and heavy duty loads for both stationary and mobile applications. Performance enhancements have been implemented to optimize fuel consumption and increase thermal efficiency as well as lowering exhaust emissions on these engines. Recently dual fueling of Diesel engines has been found one of the means to achieve these goals. Different types of fuels are tried to displace some of the diesel fuel consumption. This study is made to identify the most favorable conditions for dual fuel mode of operation using Diesel as main fuel and Gasoline as a combustion improver. A single cylinder naturally aspirated air cooled 0.4 liter direct injection diesel engine is used. Diesel is injected by the normal fuel injection system, while Gasoline is carbureted with air using a simple single jet carburetor mounted at the air intake. The engine has been operated at constant speed of 3000 rpm and the load was varied. Different Gasoline to air mixture strengths investigated, and diesel injection timing is also varied. The optimum setting of the engine has been defined which increased the thermal efficiency, reduced the NOx % and HC%.


Author(s):  
D.K. Dond ◽  
N.P. Gulhane

Limited fossil fuel reservoir capacity and pollution caused by them is the big problem in front of researchers. In the present paper, an attempt was made to find a solution to the same. The conventional fuel injection system was retrofitted with a simple version of the common rail direct injection system for the small diesel engine. Further, the effect of injection system parameters was observed on the performance and emission characteristics of the retrofitted common rail direct injection diesel engine. The parameters such as injection pressure, the start of pilot injection timing, the start of main injection timing and quantity of percentage fuel injection during the pilot and main injection period were considered for experimental investigation. It was observed that all the evaluated parameters were found vital for improving the engine’s performance and emission characteristics. The retrofitted common rail direct injection system shows an average 7% rise in brake thermal efficiency with economic, specific fuel consumption. At the same time, much more reduction in hydrocarbon, carbon monoxide and smoke opacity with a penalty of a slight increase in nitrogen oxides.


2011 ◽  
Vol 121-126 ◽  
pp. 2238-2242
Author(s):  
Ming Hai Li ◽  
Feng Jiang ◽  
Biao Liu ◽  
Ming Gao Ouyang

GT-Suite software is used to establish the simulation model of electronic fuel injection system for 16V280ZJ diesel engine. Combustion process simulation calculation is conducted to the direct injection (DI) diesel engine based on a main-post double injection scheme. Simulation parameters are modified based on the comparison with given experimental results. The calculation results effectively reflect the influence of fuel ratio and the interval angle between main and post injection over emission and fuel economy. Finally, in order to improve the engine emissions and reduce the pressure rise rate, we get the optimal injection solution for the main-post injection mode.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2362
Author(s):  
Hyungmin Lee

This study was performed to analyze the spray, combustion, and air pollutant characteristic of JP-5 fuel for naval aircraft in a spray visualization system and a single-cylinder CRDI diesel engine that can be visualized. The analysis results of JP-5 fuel were compared with DF. The spray tip penetration of JP-5 showed diminished results as the spray developed. JP-5 had the highest ROHR and ROPR regardless of the fuel injection timings. The physicochemical characteristics of JP-5, such as its excellent vaporization and low cetane number, were analyzed to prolong the ignition delay. Overall, the longer combustion period and the lower heat loss of the DF raised the engine torque and the IMEP. JP-5 showed higher O2 and lower CO2 levels than the DF fuel. The CO emission level increased as the injection timing was advanced in two test fuels, and the CO emitted from the DF fuel, which has a longer combustion period than JP-5, turned out to be lower. NOx also reduced as the fuel injection timing was retarded, but it was discharged at a higher level in JP-5 due to the large heat release. The images from the combustion process visualization showed that the flame luminosity of DF is stronger, its ignition delay is shorter, and its combustion period is longer than that of JP-5.


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


2017 ◽  
Vol 19 (2) ◽  
pp. 202-213 ◽  
Author(s):  
Michal Pasternak ◽  
Fabian Mauss ◽  
Christian Klauer ◽  
Andrea Matrisciano

A numerical platform is presented for diesel engine performance mapping. The platform employs a zero-dimensional stochastic reactor model for the simulation of engine in-cylinder processes. n-Heptane is used as diesel surrogate for the modeling of fuel oxidation and emission formation. The overall simulation process is carried out in an automated manner using a genetic algorithm. The probability density function formulation of the stochastic reactor model enables an insight into the locality of turbulence–chemistry interactions that characterize the combustion process in diesel engines. The interactions are accounted for by the modeling of representative mixing time. The mixing time is parametrized with known engine operating parameters such as load, speed and fuel injection strategy. The detailed chemistry consideration and mixing time parametrization enable the extrapolation of engine performance parameters beyond the operating points used for model training. The results show that the model responds correctly to the changes of engine control parameters such as fuel injection timing and exhaust gas recirculation rate. It is demonstrated that the method developed can be applied to the prediction of engine load–speed maps for exhaust NOx, indicated mean effective pressure and fuel consumption. The maps can be derived from the limited experimental data available for model calibration. Significant speedup of the simulations process can be achieved using tabulated chemistry. Overall, the method presented can be considered as a bridge between the experimental works and the development of mean value engine models for engine control applications.


Author(s):  
Tsuyoshi Kondo ◽  
Tsuguhiko Nakagawa

Diesel engine has some advantages that thermal efficiency is high and control response is fast. On the other hand, more particulate matter (PM) and nitrogen oxide (NOx) are contained in the exhaust gas of diesel engine. Premixed charge compression ignition (PCCI) combustion is proposed to reduce the PM and NOx. In the lean range of equivalent ratio, unburned fuel is left and in the rich range, PM and soot are generated. For the practical use of PCCI combustion, mixing fuel and air well is important under the low equivalent ratio of injection. In this study, the mixing characteristics of fuel and air in a cylinder were numerically evaluated. A numerical simulation was performed with general-purpose simulator. The fuel has been injected into the vertical direction of cylinder and injection angle has been defined as 0 degree. In order to express the collusion, impingement on the wall model, that defines behavior of a droplet impinged on the wall with the Weber number of a droplet, was applied. By the injection timing, standard deviation of local equivalent ratio at Top Dead Center (TDC) was plotted. In this study, Frequency of mixing in each cell statistically was observed to evaluate the fuel-air mixing degree. The authors have taken notice of the condition which can be reduced the amount of scatter in the distribution of local equivalent ratio.


Author(s):  
Hyun Kyu Suh ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

The aim of this work is to investigate the effect of the blending ratio and pilot injection on the spray and combustion characteristics of biodiesel fuel and compare these factors with those of diesel fuel in a direct injection common-rail diesel engine. In order to study the factors influencing the spray and combustion characteristics of biodiesel fuel, experiments involving exhaust emissions and engine performance were conducted at various biodiesel blending ratios and injection conditions for engine operating conditions. The macroscopic and microscopic spray characteristics of biodiesel fuel, such as injection rate, split injection effect, spray tip penetration, droplet diameter, and axial velocity distribution, were compared with the results from conventional diesel fuel. For biodiesel blended fuel, it was revealed that a higher injection pressure is needed to achieve the same injection rate at a higher blending ratio. The spray tip penetration of biodiesel fuel was similar to that of diesel. The atomization characteristics of biodiesel show that it has higher Sauter mean diameter and lower spray velocity than conventional diesel fuel due to high viscosity and surface tension. The peak combustion pressures of diesel and blending fuel increased with advanced injection timing and the combustion pressure of biodiesel fuel is higher than that of diesel fuel. As the pilot injection timing is retarded to 15deg of BTDC that is closed by the top dead center, the dissimilarities of diesel and blending fuels combustion pressure are reduced. It was found that the pilot injection enhanced the deteriorated spray and combustion characteristics of biodiesel fuel caused by different physical properties of the fuel.


2019 ◽  
pp. 146808741987854
Author(s):  
Hossein Ahmadian ◽  
Gholamhassan Najafi ◽  
Barat Ghobadian ◽  
Seyed Reza Hassan-Beygi ◽  
Seyed Salar Hoseini

The understanding of noise generation and source identification is vital in noise control. This research was conducted to experimentally evaluate combustion-induced noise and vibration using coherence and wavelet coherence estimates. A single-cylinder direct-injection diesel engine was chosen for experimental investigation. The independent variables for conducting experiments were injection timing with five levels of 22, 27, 32 (normal), 37, and 42 crank angles before the top dead center, and also the engine torque load with four levels of 55%, 70%, 85%, and 100% of the rated value. The signals of cylinder pressure, liner acceleration, and radiated sound pressure of the test engine were measured and recorded. Then, coherency and wavelet coherency experiments were carried out between cylinder pressure and liner acceleration, cylinder pressure and sound pressure, and liner acceleration and sound pressure signals in MATLAB software. The results indicated that increasing load would increase wavelet coherency between cylinder pressure and liner acceleration signals at frequencies higher than 1 kHz. The coherent regions between cylinder pressure and sound pressure signals were mainly at frequencies higher than 1 kHz while advancing the fuel injection timing had shifted the coherency toward lower frequencies. In general, with advancing injection timing, the coherent regions between liner acceleration and sound pressure signals have appeared at broader time ranges, especially at frequencies between 100 and 500 Hz. Comparing the results of the wavelet coherency and coherency tests, we concluded that wavelet coherency is a more accurate and descriptive tool in evaluating the combustion-induced noise and vibration.


Sign in / Sign up

Export Citation Format

Share Document