scholarly journals An Age-Related Exponential Decline in the Risk of Multiple Islet Autoantibody Seroconversion During Childhood

2021 ◽  
Author(s):  
Ezio Bonifacio ◽  
Andreas Weiß ◽  
Christiane Winkler ◽  
Markus Hippich ◽  
Marian J. Rewers ◽  
...  

<b>Objective</b>. Islet autoimmunity develops prior to clinical type 1 diabetes and includes multiple and single autoantibody phenotypes. The objective was to determine age-related risks of islet autoantibodies that reflect etiology and improve screening for pre-symptomatic type 1 diabetes. <p><b>Research Design and Methods</b>. The Environmental Determinants of Diabetes in the Young study prospectively followed 8,556 genetically at-risk children at 3–6-month intervals from birth for the development of islet autoantibodies and type 1 diabetes. The age-related change in the risk of developing islet autoantibodies was determined using landmark and regression models. </p> <p><b>Results</b>. The 5-year risk of developing multiple islet autoantibodies was 4.3% (95% confidence interval, 3.8–4.7) at 7.5 months of age and declined to 1.1% (95% confidence interval, 0.8–1.3) at a landmark age of 6.25 years (<i>P</i><0.0001). Risk decline was slight or absent in single insulin- and GAD-autoantibody phenotypes. The influence of sex, <i>HLA</i> and other susceptibility genes on risk subsided with increasing age and was abrogated by age six years. Highest sensitivity and positive predictive value of multiple islet autoantibody phenotypes for type 1 diabetes was achieved by autoantibody screening at 2 years and again at 5–7 years of age. </p> <p><b>Conclusions</b>. The risk of developing islet autoimmunity declines exponentially with age and the influence of major genetic factors on this risk is limited to the first few years of life. </p>

2021 ◽  
Author(s):  
Ezio Bonifacio ◽  
Andreas Weiß ◽  
Christiane Winkler ◽  
Markus Hippich ◽  
Marian J. Rewers ◽  
...  

<b>Objective</b>. Islet autoimmunity develops prior to clinical type 1 diabetes and includes multiple and single autoantibody phenotypes. The objective was to determine age-related risks of islet autoantibodies that reflect etiology and improve screening for pre-symptomatic type 1 diabetes. <p><b>Research Design and Methods</b>. The Environmental Determinants of Diabetes in the Young study prospectively followed 8,556 genetically at-risk children at 3–6-month intervals from birth for the development of islet autoantibodies and type 1 diabetes. The age-related change in the risk of developing islet autoantibodies was determined using landmark and regression models. </p> <p><b>Results</b>. The 5-year risk of developing multiple islet autoantibodies was 4.3% (95% confidence interval, 3.8–4.7) at 7.5 months of age and declined to 1.1% (95% confidence interval, 0.8–1.3) at a landmark age of 6.25 years (<i>P</i><0.0001). Risk decline was slight or absent in single insulin- and GAD-autoantibody phenotypes. The influence of sex, <i>HLA</i> and other susceptibility genes on risk subsided with increasing age and was abrogated by age six years. Highest sensitivity and positive predictive value of multiple islet autoantibody phenotypes for type 1 diabetes was achieved by autoantibody screening at 2 years and again at 5–7 years of age. </p> <p><b>Conclusions</b>. The risk of developing islet autoimmunity declines exponentially with age and the influence of major genetic factors on this risk is limited to the first few years of life. </p>


2018 ◽  
Author(s):  
Santosh Lamichhane ◽  
Esko Kemppainen ◽  
Kajetan Trost ◽  
Heli Siljander ◽  
Heikki Hyoty ◽  
...  

Previous studies suggest that metabolic dysregulation precedes the onset of type 1 diabetes (T1D). However, these metabolic disturbances and their specific role in disease initiation remain poorly understood. Here we analysed polar metabolites from 415 longitudinal plasma samples in a prospective cohort of children in three study groups: those who progressed to T1D (PT1D), who seroconverted to one islet autoantibody (Ab) but not to T1D (P1Ab), and Ab-negative controls (CTR). In early infancy, PT1D associated with downregulated amino acids, sugar derivatives and fatty acids, including catabolites of microbial origin, as compared to CTR. Methionine remained persistently upregulated in PT1D as compared to CTR and P1Ab. Appearance of islet autoantibodies associated with decreased glutamic and aspartic acids. Our findings suggest that children who progress to T1D have a unique metabolic profile, which is however altered with the onset of islet autoantibodies. Our findings may assist in early prediction of T1D.


2018 ◽  
Author(s):  
Santosh Lamichhane ◽  
Linda Ahonen ◽  
Thomas Sparholt Dyrlund ◽  
Esko Kemppainen ◽  
Heli Siljander ◽  
...  

AbstractType 1 diabetes (T1D) is one of the most prevalent autoimmune diseases among children in Western countries. Earlier metabolomics studies suggest that T1D is preceded by dysregulation of lipid metabolism. Here we used a lipidomics approach to analyze molecular lipids in a prospective series of 428 plasma samples from 40 children who progressed to T1D (PT1D), 40 children who developed at least a single islet autoantibody but did not progress to T1D during the follow-up (P1Ab) and 40 matched controls (CTR). Sphingomyelins were found to be persistently downregulated in PT1D when compared to the P1Ab and CTR groups. Triacylglycerols and phosphatidylcholines were mainly downregulated in PT1D as compared to P1Ab at the age of 3 months. Our study suggests that children who progressed to islet autoimmunity or overt T1D are characterized by distinct lipidomic signatures, which may be helpful in the identification of at-risk children before the initiation of autoimmunity.


2018 ◽  
Vol 56 (9) ◽  
pp. 602-605 ◽  
Author(s):  
Andreas Beyerlein ◽  
Ezio Bonifacio ◽  
Kendra Vehik ◽  
Markus Hippich ◽  
Christiane Winkler ◽  
...  

BackgroundProgression time from islet autoimmunity to clinical type 1 diabetes is highly variable and the extent that genetic factors contribute is unknown.MethodsIn 341 islet autoantibody-positive children with the human leucocyte antigen (HLA) DR3/DR4-DQ8 or the HLA DR4-DQ8/DR4-DQ8 genotype from the prospective TEDDY (The Environmental Determinants of Diabetes in the Young) study, we investigated whether a genetic risk score that had previously been shown to predict islet autoimmunity is also associated with disease progression.ResultsIslet autoantibody-positive children with a genetic risk score in the lowest quartile had a slower progression from single to multiple autoantibodies (p=0.018), from single autoantibodies to diabetes (p=0.004), and by trend from multiple islet autoantibodies to diabetes (p=0.06). In a Cox proportional hazards analysis, faster progression was associated with an increased genetic risk score independently of HLA genotype (HR for progression from multiple autoantibodies to type 1 diabetes, 1.27, 95% CI 1.02 to 1.58 per unit increase), an earlier age of islet autoantibody development (HR, 0.68, 95% CI 0.58 to 0.81 per year increase in age) and female sex (HR, 1.94, 95% CI 1.28 to 2.93).ConclusionsGenetic risk scores may be used to identify islet autoantibody-positive children with high-risk HLA genotypes who have a slow rate of progression to subsequent stages of autoimmunity and type 1 diabetes.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Brittni N. Frederiksen ◽  
Andrea K. Steck ◽  
Miranda Kroehl ◽  
Molly M. Lamb ◽  
Randall Wong ◽  
...  

Previously, we examined 20 non-HLA SNPs for association with islet autoimmunity (IA) and/or progression to type 1 diabetes (T1D). Our objective was to investigate fourteen additional non-HLA T1D candidate SNPs for stage- and age-related heterogeneity in the etiology of T1D. Of 1634 non-Hispanic white DAISY children genotyped, 132 developed IA (positive for GAD, insulin, or IA-2 autoantibodies at two or more consecutive visits); 50 IA positive children progressed to T1D. Cox regression was used to analyze risk of IA and progression to T1D in IA positive children. Restricted cubic splines were used to model SNPs when there was evidence that risk was not constant with age.C1QTNF6(rs229541) predicted increased IA risk (HR: 1.57, CI: 1.20–2.05) but not progression to T1D (HR: 1.13, CI: 0.75–1.71). SNP (rs10517086) appears to exhibit an age-related effect on risk of IA, with increased risk before age 2 years (age 2 HR: 1.67, CI: 1.08–2.56) but not older ages (age 4 HR: 0.84, CI: 0.43–1.62).C1QTNF6(rs229541), SNP (rs10517086), andUBASH3A(rs3788013) were associated with development of T1D. This prospective investigation of non-HLA T1D candidate loci shows that some SNPs may exhibit stage- and age-related heterogeneity in the etiology of T1D.


2017 ◽  
Vol 103 (8) ◽  
pp. 2870-2878 ◽  
Author(s):  
Maarit K Koskinen ◽  
Johanna Lempainen ◽  
Eliisa Löyttyniemi ◽  
Olli Helminen ◽  
Anne Hekkala ◽  
...  

Abstract Context A declining first-phase insulin response (FPIR) is characteristic of the disease process leading to clinical type 1 diabetes. It is not known whether reduced FPIR depends on class II human leukocyte antigen (HLA) genotype, islet autoimmunity, or both. Objective To dissect the role of class II HLA DR-DQ genotypes and biochemical islet autoantibodies in the compromised FPIR. Design, Setting, Participants A total of 438 children with defined HLA DR-DQ genotype in the prospective Finnish Type 1 Diabetes Prediction and Prevention Study were analyzed for FPIR in a total of 1149 intravenous glucose tolerance tests and were categorized by their HLA DR-DQ genotype and the number of biochemical islet autoantibodies at the time of the first FPIR. Age-adjusted hierarchical linear mixed models were used to analyze repeated measurements of FPIR. Main Outcome Measure The associations between class II HLA DR-DQ genotype, islet autoantibody status, and FPIR. Results A strong association between the degree of risk conferred by HLA DR-DQ genotype and positivity for islet autoantibodies existed (P &lt; 0.0001). FPIR was inversely associated with the number of biochemical autoantibodies (P &lt; 0.0001) irrespective of HLA DR-DQ risk group. FPIR decreased over time in children with multiple autoantibodies and increased in children with no biochemical autoantibodies (P &lt; 0.0001 and P = 0.0013, respectively). Conclusions The class II HLA DR-DQ genotype association with FPIR was secondary to the association between HLA and islet autoimmunity. Declining FPIR was associated with positivity for multiple islet autoantibodies irrespective of class II HLA DR-DQ genotype.


Diabetes ◽  
2022 ◽  
Author(s):  
Naiara G. Bediaga ◽  
Alexandra L. Garnham ◽  
Gaetano Naselli ◽  
Esther Bandala-Sanchez ◽  
Natalie L. Stone ◽  
...  

Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of at-risk children, associated with progression to islet autoimmunity. We analysed gene expression by RNAseq in CD4+ and CD8+ T cells, NK cells and B cells, and chromatin accessibility by ATACseq in CD4+ T cells, in five genetically at-risk children with islet autoantibodies who progressed to diabetes over a median of 3 years (‘Progressors’) compared to five children matched for sex, age and HLA-DR who had not progressed (‘Non-progressors). In Progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 Progressors and 11 Non-progressors. Flow cytometry confirmed progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ T cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document