scholarly journals Green Sonochemical Synthesis of Silver Nanoparticles Using Adansonia Digitata Leaves Extract and Evaluation of Their Antibacterial Potential

Author(s):  
Wilson Mbiti Njue ◽  
Jackson Kilonzo Kithokoi ◽  
Jane Mburu ◽  
Henry Mwangi ◽  
Sauda Swaleh

Metal nanoparticles in the field of nanotechnology are of great interest to modern scientific research due to their size effects, medical uses and, catalytic, electronic and optical properties. Green synthesis of metal nanoparticles is a feasible alternative to chemical methods as it is environmentally friendly and cost effective. In continuation with our research on green synthesis of silver nanoparticles using Kenyan medicinal plants, we here report the synthesis of novel silver nanoparticles (AgNPs) on ultrasonic bath using Adansonia digitata leaves extracts and analysis of their antibacterial activity. The nanoparticles were characterized by UV-Vis, High Resolution Transmission Electron Microscopy (HRTEM), FTIR spectroscopy and Energy Dispersive X-ray (EDX). EDX analysis affirmed the nanoparticles were pure silver. Crystalline nature of the nanoparticles was confirmed by bright circular spots in the Selected Area Electron Diffraction (SAED) in HRTEM image. The AgNPs were spherical with an average size 13 nm. FTIR analysis showed strong –C=C- and –OH stretching bands due to compounds capping the nanoparticles. The synthesized AgNPs showed high inhibition zones of 17.1±0.130 mm towards Gram-negative bacteria E. coli and 12.9±0.082mm towards Gram positive bacteria S. aureus. The aqueous A. digitata extract had no effect on growth inhibition of test bacteria. The study showed that the silver nanoparticles synthesized from the plant’s leaves extract had antibacterial activity against both Gram negative and positive pathogenic bacteria. The nanoparticles can be utilized towards developing novel drugs useful in combating pathogens.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanna Gevorgyan ◽  
Robin Schubert ◽  
Mkrtich Yeranosyan ◽  
Lilit Gabrielyan ◽  
Armen Trchounian ◽  
...  

AbstractThe application of green synthesis in nanotechnology is growing day by day. It’s a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly’s potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV–Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.


2020 ◽  
Vol 11 (1) ◽  
pp. 8110-8120

The present findings were focused on green synthesis of silver nanoparticles through an aqueous extract of Saraca indica. The stability of the nanoparticle was achieved through the optimization of physico-chemical parameters. The sharp UV-visible absorption maximum at 400 was observed for biological synthesized silver nanoparticles. The spectroscopic analysis was thus used to assess the formation of silver nanoparticles. The AFM analysis did analyze the morphology of the nanocomposite, which was further confirmed through TEM micrograph. The electron micrograph image discloses that silver nanoparticles were polydispersed and dominantly as spherical with size ranges from 40nm to 100nm. The average size distribution was 49nm. The chemical reductions of Ag+ ions were further confirmed through FTIR. The biogenic silver nanoparticle and their drug formulation showed profound antibacterial activity against pathogenic bacteria. The flavonoids rich binding of silver nanoparticle showed great medicinal potential and can be used for the treatment of several harmful infectious diseases. Hence, plant-based metal nanoparticles meet the demand for less toxic formulation during drug development and its delivery.


2020 ◽  
Vol 234 (3) ◽  
pp. 531-540
Author(s):  
Saba Ghamipoor ◽  
Faeze Fayyazi ◽  
Saeed Bahadorikhalili

AbstractIn this work, green synthesis of silver nanoparticles is described by phytochemical reducing silver nitrate aqueous solution using Anthemis nobilis. For this purpose, Anthemis nobilis extract was used for the synthesis of silver nanoparticles as both surfactant and reducing agent. Green synthesis method is a good alternative to physical and chemical methods, since it is fast, simple, environmentally-friendly and economic. The produced nanoparticles are identified using FE-SEM, EDX, and FT-IR and Uv/Vis techniques. Formation of silver nanoparticles is verified in 430–420 nm range. Reduction of silver ions by hydroxyl functional group is also confirmed by FT-IR device. EDX device confirms the presence of a peak for Ag element without any impurity peak. Silver nanoparticles are identified by FE-SEM device and found to have average size between 17 and 42 nm. Also, the antibacterial activity of the synthesized nanoparticles is compared with that of staphyloccusaureus and pseudomonasa aeruginosa and the maximum inhibitory activity against the bacteria is obtained using 1 mM nitrate solution.


RSC Advances ◽  
2018 ◽  
Vol 8 (65) ◽  
pp. 37176-37183 ◽  
Author(s):  
A. K. M. Atique Ullah ◽  
M. F. Kabir ◽  
M. Akter ◽  
A. N. Tamanna ◽  
A. Hossain ◽  
...  

Persuaded by the necessity of finding new sources of antibiotics, Ag NPs were synthesized by adopting a newly developed green synthesis technique and subsequently, their antibacterial activity against different pathogenic bacteria was evaluated.


2020 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Darshana Rajput ◽  
Samrat Paul ◽  
Annika Gupta

Green synthesis of silver nanoparticles has gained momentum since the demand to synthesize nanoparticles in an eco-friendly way has increased significantly. Here we report, economic and cost-effective biosynthesis of silver nanoparticles using waste of tea leaves (Camelia sinesis). The aim of the study was to biosynthesize silver nanoparticles and to assess its potential applications such as antibacterial activity, plant growth induction and dye degradation. Standardization studies were done using UV- Spectroscopy to determine the optimum synthesis condition for synthesis of silver nanoparticles. The optimum conditions were found to be pH 6.0, ambient temperature condition and 5mM AgNO3 concentration. Characterization studies using UV-Visible Spectroscopy, TEM and AFM analysis show nanoscale range of the particles. The silver nanoparticles showed maximum antibacterial activity against K. pneumonia followed by E. coli and minimum activity against C. diptheriae. The nanoparticles showed significant effect on the growth of Vigna radiata seeds at 50% concentration of nanoparticles. The particles immobilized on cotton cloth showed antibacterial activity against Gram positive organisms. Dye degradation studies showed that the nanoparticles are able to degrade phenol red and blue textile dye effectively.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4773
Author(s):  
S. M. Abu Nayem ◽  
Nasrin Sultana ◽  
Md. Aminul Haque ◽  
Billal Miah ◽  
Md. Mahmodul Hasan ◽  
...  

In this report, we discussed rapid, facile one-pot green synthesis of gold and silver nanoparticles (AuNPs and AgNPs) by using tuber extract of Amorphophallus paeoniifolius, and evaluated their antibacterial activity. AuNPs and AgNPs were synthesized by mixing their respective precursors (AgNO3 and HAuCl4) with tuber extract of Amorphophallus paeoniifolius as the bio-reducing agent. Characterization of AuNPs and AgNPs were confirmed by applying UV-vis spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDS). From UV-vis characterization, surface plasmon resonance spectra were found at 530 nm for AuNPs and 446 nm for AgNPs. XRD data confirmed that both synthesized nanoparticles were face-centered cubic in crystalline nature, and the average crystallite sizes for the assign peaks were 13.3 nm for AuNPs and 22.48 nm for AgNPs. FTIR data evaluated the characteristic peaks of different phytochemical components of tuber extract, which acted as the reducing agent, and possibly as stabilizing agents. The antibacterial activity of synthesized AuNPs and AgNPs were examined in Muller Hinton agar, against two Gram-positive and four Gram-negative bacteria through the disc diffusion method. AuNPs did not show any inhibitory effect, while AgNPs showed good inhibitory effect against both Gram-positive and Gram-negative bacteria.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2383
Author(s):  
Majid Sharifi-Rad ◽  
Pawel Pohl ◽  
Francesco Epifano ◽  
José M. Álvarez-Suarez

Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract as a bioreduction and capping agent at room temperature. UV–Vis spectroscopy was applied for the investigation of the reaction proceedings. To characterize the greenly synthesized AgNPs, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and transmission electron microscopy (TEM) analyses were utilized. In addition, the total phenolics and flavonoids contents, antioxidant, antibacterial, and anti-inflammatory activities of the greenly synthesized AgNPs and the A. tribuloides root extract were evaluated. The results indicated that the AgNPs had spherical morphology and crystalline structure with the average size of 34.2 ± 8.0 nm. The total phenolics and flavonoids contents of the greenly synthesized AgNPs were lower than those for the A. tribuloides root extract. The resultant AgNPs exhibited the appropriate antioxidant activity (64%) as compared to that for the A. tribuloides root extract (47%). The antibacterial test approved the higher bactericidal activity of the resulting AgNPs on the Gram-positive and Gram-negative bacteria in comparison to the A. tribuloides root extract. Considering the anti-inflammatory activity, the greenly synthesized AgNPs showed a stranger effect than the A. tribuloides root extract (82% versus 69% at 500 μg/mL). Generally, the AgNPs that were fabricated by using the A. tribuloides root extract had appropriate antioxidant, antibacterial, and anti-inflammatory activities and, therefore, can be considered as a promising candidate for various biomedical applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Gaurav Sharma ◽  
Nakuleshwar Dut Jasuja ◽  
Manoj Kumar ◽  
Mohammad Irfan Ali

The present study explores biological synthesis of silver nanoparticles (AgNPs) using the cell-free extract ofSpirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract ofS. platensisshowed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is,Escherichia coli, MTCC-9721;Proteus vulgaris, MTCC-7299;Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is,Staphylococcus aureus, MTCC-9542;S. epidermidis, MTCC-2639;Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI) that is31.3±1.11inP. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.


2020 ◽  
pp. 1579-1588
Author(s):  
Ghada Mohammed Saleh ◽  
Shaymaa Suhail Najim

     Nanoparticles produced by plants are preferred in the medical field for its safe and unpolluted product; it is also accepted as an ecofriendly, non-expensive, and non-toxic nanomaterial. In this study, silver nitrate was successfully used to produce silver nanoparticles (AgNPs) by the use extractsof 4 different latex-producing plants which belong to 2 families (Moraceae and Euphorbiaceae). The synthesis was proved by Atomic Force Microscopy (AFM).The sizes of the AgNP grains were estimated by Granularity Cumulating Distribution (GCD). The results revealed the production of AgNPs in different sizes of 103 and 82 nm using the Moraceae family and 77 and74nm using the Euphorbiaceae family.Antibacterial activity was also detected against both Gram positive and Gram negative pathogenic bacteria using the well diffusion assay. In conclusion, this source of nanoparticles can be a very useful industrial project in a goal to find new safe and economic alternatives to antibiotics.


Author(s):  
S. Prathimaa ◽  
J. Anbumalarmathi ◽  
S. Aruna Sharmili

Plant mediated fabrication of nanoparticles and nanomaterials are gaining momentum as it is eco-friendly and cost-effective. In the present study, we synthesis of Silver nanoparticles using aqueous extract of  Quercus infectoria nuts and Daucus carota subsp sativum leaves. The surface plasma resonance at 417 and 450 nm for Q. infectoria and D. carota respectively confirmed the formation of AgNPs. Scanning Electron Microscopic (SEM) confirmed the spherical shape of the nanoparticles, which had an average size of 67.5 nm and 49.2 nm for Q. infectoria nanoparticles (QAgNPs)and D. carota nanoparticles (DAgNPs). The elemental composition by Energy-Dispersive X-ray analysis of the nanoparticle showed an atomic percentage of silver as 73.64 % and 75.93% for Q. infectoria and D. carota.FT- IR analysis of the plant extracts and synthesized silver nanoparticles showed the presence of various functional groups. The total antioxidant activity of QAgNPs was 81.18% and that of DAgNPs was 73.36%. The QAgNPs and DAgNPs exhibited antibacterial activity against B. subtilis, E. coli and S. aureus. The percentage of cell viability for QAgNPs and DAgNPs assessed using HeLa cells was 21.1% and 6% respectively.


Sign in / Sign up

Export Citation Format

Share Document