Reasoning of injection well flow back optimum period at low permeable HTR reserves formations of Tyumen suite

Author(s):  
J.A. Plitkina ◽  
◽  
D.P. Patrakov ◽  
E.O. Kondratov ◽  
D.V. Nikiforov ◽  
...  
2011 ◽  
Vol 2 (1) ◽  
pp. 13-17
Author(s):  
I. David ◽  
M. Visescu

Abstract Geothermal energy source is the heat from the Earth, which ranges from the shallow ground (the upper 100 m of the Earth) to the hot water and hot rock which is a few thousand meters beneath the Earth's surface. In both cases the so-called open systems for geothermal energy resource exploitation consist of a groundwater production well to supply heat energy and an injection well to return the cooled water, from the heat pump after the thermal energy transfer, in the underground. In the paper an analytical method for a rapid estimation of the ground water flow direction effect on the coupled production well and injection well system will be proposed. The method will be illustrated with solutions and images for representative flow directions respect to the axis of the production/injection well system.


Author(s):  
Yu.А. Pityuk ◽  
◽  
А.Y. Davletbaev ◽  
I.А. Zarafutdinov ◽  
А.А. Musin ◽  
...  

2017 ◽  
pp. 63-67
Author(s):  
L. A. Vaganov ◽  
A. Yu. Sencov ◽  
A. A. Ankudinov ◽  
N. S. Polyakova

The article presents a description of the settlement method of necessary injection rates calculation, which is depended on the injected water migration into the surrounding wells and their mutual location. On the basis of the settlement method the targeted program of geological and technical measures for regulating the work of the injection well stock was created and implemented by the example of the BV7 formation of the Uzhno-Vyintoiskoe oil field.


2013 ◽  
Vol 807-809 ◽  
pp. 2508-2513
Author(s):  
Qiang Wang ◽  
Wan Long Huang ◽  
Hai Min Xu

In pressure drop well test of the clasolite water injection well of Tahe oilfield, through nonlinear automatic fitting method in the multi-complex reservoir mode for water injection wells, we got layer permeability, skin factor, well bore storage coefficient and flood front radius, and then we calculated the residual oil saturation distribution. Through the examples of the four wells of Tahe oilfield analyzed by our software, we found that the method is one of the most powerful analysis tools.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yong Xiao ◽  
Jianchun Guo ◽  
Hehua Wang ◽  
Lize Lu ◽  
John McLennan ◽  
...  

A coupled thermal-hydraulic-mechanical (THM) model is developed to simulate the combined effect of fracture fluid flow, heat transfer from the matrix to injected fluid, and shearing dilation behaviors in a coupled fracture-matrix hot volcanic reservoir system. Fluid flows in the fracture are calculated based on the cubic law. Heat transfer within the fracture involved is thermal conduction, thermal advection, and thermal dispersion; within the reservoir matrix, thermal conduction is the only mode of heat transfer. In view of the expansion of the fracture network, deformation and thermal-induced stress model are added to the matrix node’s in situ stress environment in each time step to analyze the stability of the matrix. A series of results from the coupled THM model, induced stress, and matrix stability indicate that thermal-induced aperture plays a dominant role near the injection well to enhance the conductivity of the fracture. Away from the injection well, the conductivity of the fracture is contributed by shear dilation. The induced stress has the maximum value at the injection point; the deformation-induced stress has large value with smaller affected range; on the contrary, thermal-induced stress has small value with larger affected range. Matrix stability simulation results indicate that the stability of the matrix nodes may be destroyed; this mechanism is helpful to create complex fracture networks.


1990 ◽  
Vol 70 (3) ◽  
pp. 639-660 ◽  
Author(s):  
H. W. CUTFORTH ◽  
C. A. CAMPBELL ◽  
D. JUDIESCH ◽  
R. M. DePAUW ◽  
J. M. CLARKE ◽  
...  

Historically, research has identified the optimum period of seeding Canadian Western Red Spring (CWRS) wheat in the Brown soil zone to be between late April and mid-May, and approximately mid-May in the Dark Brown soil zone. The recent development and release of new spring wheat cultivars with significantly different genetic makeup (Canada Prairie Spring (CPS) wheats) prompted this study to determine if the established criteria were valid for them. Seeding date experiments involving one CWRS wheat (Neepawa) and three CPS wheats (HY320, HY355, HY912) were carried out at Swift Current (1984–1988) and at Regina and Scott (1985–1988). Although significant seeding date × cultivar interactions occurred for several of the characteristics measured (e.g., yield, protein concentration), no cultivar consistently responded differently than the others. However, the difference in days to reach maturity between the later maturing CPS cultivars and the CWRS cultivar, Neepawa, generally increased with delayed seeding making the CPS cultivars more susceptible to early fall frost damage which could decrease their yields and grain quality. Our results showed no reason to change recommendations for seeding dates in either soil zone, and both types of wheat can be treated similarly except that late seeding for CPS wheats should be avoided.Key words: Seeding date, grain yield, GDD, protein, wheat


Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

With recent concerns on CO2 emissions from coal fired electricity generation plants; there has been major emphasis on the development of safe and economical Carbon Dioxide Capture and Sequestration (CCS) technology worldwide. Saline reservoirs are attractive geological sites for CO2 sequestration because of their huge capacity for sequestration. Over the last decade, numerical simulation codes have been developed in U.S, Europe and Japan to determine a priori the CO2 storage capacity of a saline aquifer and provide risk assessment with reasonable confidence before the actual deployment of CO2 sequestration can proceed with enormous investment. In U.S, TOUGH2 numerical simulator has been widely used for this purpose. However at present it does not have the capability to determine optimal parameters such as injection rate, injection pressure, injection depth for vertical and horizontal wells etc. for optimization of the CO2 storage capacity and for minimizing the leakage potential by confining the plume migration. This paper describes the development of a “Genetic Algorithm (GA)” based optimizer for TOUGH2 that can be used by the industry with good confidence to optimize the CO2 storage capacity in a saline aquifer of interest. This new code including the TOUGH2 and the GA optimizer is designated as “GATOUGH2”. It has been validated by conducting simulations of three widely used benchmark problems by the CCS researchers worldwide: (a) Study of CO2 plume evolution and leakage through an abandoned well, (b) Study of enhanced CH4 recovery in combination with CO2 storage in depleted gas reservoirs, and (c) Study of CO2 injection into a heterogeneous geological formation. Our results of these simulations are in excellent agreement with those of other researchers obtained with different codes. The validated code has been employed to optimize the proposed water-alternating-gas (WAG) injection scheme for (a) a vertical CO2 injection well and (b) a horizontal CO2 injection well, for optimizing the CO2 sequestration capacity of an aquifer. These optimized calculations are compared with the brute force nearly optimized results obtained by performing a large number of calculations. These comparisons demonstrate the significant efficiency and accuracy of GATOUGH2 as an optimizer for TOUGH2. This capability holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.


Sign in / Sign up

Export Citation Format

Share Document