scholarly journals Effect of Soaking and Boiling on Anti-nutritional Factors, Oligosaccharide Contents and Protein Digestibility of Newly Developed Bambara Groundnut Cultivars

Author(s):  
Olaposi Adeleke ◽  
Oladipupo Qudus Adiamo ◽  
Olumide Samson Fawale ◽  
Gbeminiyi Olamiti

Newly developed Bambara groundnut (Vigna subterranea L.) seeds (Accessions No: TVSU 5 – Bambara Groundnut White (BGW) and TVSU 146 – Bambara Groundnut Brown (BGB)) were collected from International Institute of Tropical Agriculture (IITA), Nigeria, planted and harvested. The effects of processing methods (soaking and boiling) on anti-nutritional factors and oligosaccharides content and protein digestibility of BGW and BGB compared with Bambara groundnut commercial (BGC) seeds were investigated. Soaking and boiling significantly reduced the anti-nutritional factors of the samples and the effect increased as processing time was elongated. Sample BGC had lower anti-nutritional factors than BGW and BGB after soaking for 48 h. Tannin contents of the samples were reduced drastically by 99 % throughout the soaking periods. Greatest loss in raffinose level was observed in BGB (59%) and BGW (50%) after boiling for 60 min compared with BGC (43%). The loss in stachyose content of the samples varies with processing and BGC (59%) had greatest loss after boiling for 60 min while soaking for 48 h reduced that of BGB and BGW by 57 and 35%, respectively. Boiling for 60 min increased the in vitro protein digestibility of BGB (89.34 %) compared with BGW (87.48%) and BGC (82.89%). Overall, the results demonstrated that soaking and boiling of newly developed Bambara groundnut seeds could improve the nutritive quality of the seeds.

Genome ◽  
2001 ◽  
Vol 44 (6) ◽  
pp. 995-999 ◽  
Author(s):  
H I Amadou ◽  
P J Bebeli ◽  
P J Kaltsikes

Random amplified polymorphic DNA (RAPD) markers were used to assess genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm using 25 African accessions from the collection in the International Institute for Tropical Agriculture, Ibadan, Nigeria. Fifty random decamer primers were screened to assess their ability to detect polymorphism in bambara; 17 of them were selected for this study. Considerable genetic diversity was found among the V. subterranea accessions studied. The relationships among the 25 accessions were studied by cluster analysis. The dendrograms showed two main groups of accessions mainly along the lines of their geographic origin. It is concluded that RAPD can be used for germplasm classification in bambara groundnut and hence for improving this crop.Key words: germplasm, PCR, RAPD, Vigna subterranea.


2015 ◽  
Vol 4 (2) ◽  
pp. 78 ◽  
Author(s):  
David B. Kiin-Kabari ◽  
Sunday Y. Giami

<p>Plantain flour was prepared from matured-unripe fruits of Agbagba cultivar, protein concentrate was prepared from bambara groundnut seeds using the alkaline extraction method, plantain cookies were produced using different levels of plantain flour substituted with bambara groundnut protein concentrate ranging from 0-25% and using 100% wheat flour as control. Physical characteristics, proximate composition, sensory properties and in-vitro protein digestibility of the cookie samples were determined. Cookies prepared from 15% bambara groundnut protein concentrate and 85% plantain flour compared favourably in physical characteristics (weight, height, diameter and hardness) with the control (100% wheat flour). Addition of bambara groundnut protein concentrate significantly improved the crude protein content (17.8%), ash content (2.8%), crude fibre (9.2%) and energy (434.0 kcal/100g) of the cookies compared to values obtained from 100% wheat flour. Sensory evaluation showed that cookies with 15% bambara groundnut protein concentrate and 85% plantain flour was preferred in terms of colour, flavor and general acceptability with mean scores of 8.1, 8.3 and 7.8, respectively and showed no significant difference (P ? 0.05) with the control with mean scores of 8.6, 8.5 and 8.0, respectively. However, in-vitro protein digestibility of the cookies increased from 2.74% in cookies with 100% plantain flour to 62.81% in samples with 25% bambara groundnut protein concentrate and 75% plantain flour.</p>


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 199
Author(s):  
Gokcen Kahraman ◽  
Sebnem Harsa ◽  
Maria Cristina Casiraghi ◽  
Mara Lucisano ◽  
Carola Cappa

The main objective of this study was to develop a healthy rice-based gluten-free bread by using raw, roasted, or dehulled chickpea flours. All breads containing chickpea flours showed a darker crust and were characterized by an alveolar (porosity 41.5–51.4%) and soft crumb (hardness 5.5-14.1 N). Roasted chickpea flour bread exhibited the highest specific volume, the softest crumb, and the slowest staling rate. Enriching rice-based breads with the chickpea flours resulted in increased protein (from 9.72 to 12.03–13.21 g/100 g dm), ash (from 2.01 to 2.45–2.78 g/100 g dm), fat (from 1.61 to 4.58–5.86 g/100 g), and total phenolic contents (from 49.36 up to 80.52 mg GAE/100 g dm), and in reduced (~10–14% and 13.7–17%, respectively) available starch levels and rapidly digestible starch compared to rice bread. Breads with roasted chickpea flour also showed the highest in vitro protein digestibility. The results of this study indicated that the enrichment of rice-based gluten-free breads with chickpea flours improved the technological and nutritional quality of the breads differently according to the processed chickpea flour used, also allowing recovery of a waste product.


2021 ◽  
pp. 66-75
Author(s):  
T. M. Ukeyima ◽  
I. A. Akor ◽  
B. Kyenge

In-vitro digestibility, nutritional and sensory quality of extruded breakfast cereals from maize grits, partially defatted peanut and beetroot flour blends was investigated. Composite flour blends was prepared from maize, peanut and beetroot flour in the following proportions: A= (100% maize flour as control), B = (90:0:10), C = (90:10:0), D = (80:10:10), E= (70:20:10), F = (60:30:10), and G = (50:40:10). The breakfast cereals were analyzed for proximate, vitamins, in-vitro protein digestibility and sensory properties. There was significant (P<0.05) difference in the proximate composition, the values ranged from; 4.46 to 6.82%, 3.22 - 7.32%, 0.98 to 1.23%, 3.32 – 4.55%, 3.7 – 4.34% and 75.7 – 83.96% for moisture, protein, fat, fibre, ash, and carbohydrate respectively while energy ranged from 343.31 to 357.54Kcal.  Vitamins A, B1, B2, B6 and C values ranged from 1.60–1671.84 IU, 0.95 – 1.43, 0.95 – 1.50, 1.09 – 1.75 and 8.77 – 16.22 respectively. There was increase in in-vitro protein digestibility of the samples with addition of defatted peanut and beetroot. Sensory evaluation results showed that sample C had the highest acceptability on 9-point hedonic scale.


2019 ◽  
Vol 26 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Shuyang Wang ◽  
Matthew G Nosworthy ◽  
James D House ◽  
Shannon-Hood Niefer ◽  
Michael T Nickerson

The effect of barrel temperature (120 and 150 ℃, held constant in zones 4–6) and feed moisture (20 and 24%) on the protein quality of Kabuli chickpea, sorghum, and maize flours were examined, which included amino acid profile, in vitro protein digestibility and in vitro protein digestibility-corrected amino acid score (IV-PDCAAS). It was found that the limiting amino acid of chickpea changed from threonine to valine after extrusion, whereas both sorghum and maize were limiting in lysine before and after extrusion. The in vitro protein digestibility increased from 77 to 81% for chickpea and 73 to 76% for maize; values for sorghum remained at 74% after extrusion. However, the IV-PDCAAS for the extruded flours generally remained at the same level, 69% for chickpea, 22% for sorghum, and ∼35% for maize. The effect of extrusion temperature, moisture and their interaction was significant on protein quality of sorghum and maize, but in the case of chickpea, only the extrusion temperature was significant. Only chickpea extruded at 150 ℃ (regardless of the moisture) met the protein quality (PDCAAS > 70%) requirement to be used in food assistance products.


Sign in / Sign up

Export Citation Format

Share Document