scholarly journals An Iterative Multi-Source Mutual Knowledge Transfer Framework for Machine Reading Comprehension

Author(s):  
Xin Liu ◽  
Kai Liu ◽  
Xiang Li ◽  
Jinsong Su ◽  
Yubin Ge ◽  
...  

The lack of sufficient training data in many domains, poses a major challenge to the construction of domain-specific machine reading comprehension (MRC) models with satisfying performance. In this paper, we propose a novel iterative multi-source mutual knowledge transfer framework for MRC. As an extension of the conventional knowledge transfer with one-to-one correspondence, our framework focuses on the many-to-many mutual transfer, which involves synchronous executions of multiple many-to-one transfers in an iterative manner.Specifically, to update a target-domain MRC model, we first consider other domain-specific MRC models as individual teachers, and employ knowledge distillation to train a multi-domain MRC model, which is differentially required to fit the training data and match the outputs of these individual models according to their domain-level similarities to the target domain. After being initialized by the multi-domain MRC model, the target-domain MRC model is fine-tuned to match both its training data and the output of its previous best model simultaneously via knowledge distillation. Compared with previous approaches, our framework can continuously enhance all domain-specific MRC models by enabling each model to iteratively and differentially absorb the domain-shared knowledge from others. Experimental results and in-depth analyses on several benchmark datasets demonstrate the effectiveness of our framework.

Author(s):  
Mengshi Yu ◽  
Jian Liu ◽  
Yufeng Chen ◽  
Jinan Xu ◽  
Yujie Zhang

With task-oriented dialogue systems being widely applied in everyday life, slot filling, the essential component of task-oriented dialogue systems, is required to be quickly adapted to new domains that contain domain-specific slots with few or no training data. Previous methods for slot filling usually adopt sequence labeling framework, which, however, often has limited ability when dealing with the domain-specific slots. In this paper, we take a new perspective on cross-domain slot filling by framing it as a machine reading comprehension (MRC) problem. Our approach firstly transforms slot names into well-designed queries, which contain rich informative prior knowledge and are very helpful for the detection of domain-specific slots. In addition, we utilize the large-scale MRC dataset for pre-training, which further alleviates the data scarcity problem. Experimental results on SNIPS and ATIS datasets show that our approach consistently outperforms the existing state-of-the-art methods by a large margin.


2020 ◽  
Vol 8 ◽  
pp. 141-155
Author(s):  
Kai Sun ◽  
Dian Yu ◽  
Dong Yu ◽  
Claire Cardie

Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations. We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especiallyon problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text. C3 is available at https://dataset.org/c3/ .


2020 ◽  
Vol 34 (10) ◽  
pp. 13963-13964
Author(s):  
Zhijing Wu ◽  
Hua Xu

Current neural models for Machine Reading Comprehension (MRC) have achieved successful performance in recent years. However, the model is too fragile and lack robustness to tackle the imperceptible adversarial perturbations to the input. In this work, we propose a multi-task learning MRC model with a hierarchical knowledge enrichment to further improve the robustness for noisy document. Our model follows a typical encode-align-decode framework. Additionally, we apply a hierarchical method of adding background knowledge into the model from coarse-to-fine to enhance the language representations. Besides, we optimize our model by jointly training the answer span and unanswerability prediction, aiming to improve the robustness to noise. Experiment results on benchmark datasets confirm the superiority of our method, and our method can achieve competitive performance compared with other strong baselines.


2021 ◽  
Author(s):  
Samreen Ahmed ◽  
shakeel khoja

<p>In recent years, low-resource Machine Reading Comprehension (MRC) has made significant progress, with models getting remarkable performance on various language datasets. However, none of these models have been customized for the Urdu language. This work explores the semi-automated creation of the Urdu Question Answering Dataset (UQuAD1.0) by combining machine-translated SQuAD with human-generated samples derived from Wikipedia articles and Urdu RC worksheets from Cambridge O-level books. UQuAD1.0 is a large-scale Urdu dataset intended for extractive machine reading comprehension tasks consisting of 49k question Answers pairs in question, passage, and answer format. In UQuAD1.0, 45000 pairs of QA were generated by machine translation of the original SQuAD1.0 and approximately 4000 pairs via crowdsourcing. In this study, we used two types of MRC models: rule-based baseline and advanced Transformer-based models. However, we have discovered that the latter outperforms the others; thus, we have decided to concentrate solely on Transformer-based architectures. Using XLMRoBERTa and multi-lingual BERT, we acquire an F<sub>1</sub> score of 0.66 and 0.63, respectively.</p>


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 82 ◽  
Author(s):  
Momchil Hardalov ◽  
Ivan Koychev ◽  
Preslav Nakov

Recent advances in deep neural networks, language modeling and language generation have introduced new ideas to the field of conversational agents. As a result, deep neural models such as sequence-to-sequence, memory networks, and the Transformer have become key ingredients of state-of-the-art dialog systems. While those models are able to generate meaningful responses even in unseen situations, they need a lot of training data to build a reliable model. Thus, most real-world systems have used traditional approaches based on information retrieval (IR) and even hand-crafted rules, due to their robustness and effectiveness, especially for narrow-focused conversations. Here, we present a method that adapts a deep neural architecture from the domain of machine reading comprehension to re-rank the suggested answers from different models using the question as a context. We train our model using negative sampling based on question–answer pairs from the Twitter Customer Support Dataset. The experimental results show that our re-ranking framework can improve the performance in terms of word overlap and semantics both for individual models as well as for model combinations.


Author(s):  
Ming Yan ◽  
Jiangnan Xia ◽  
Chen Wu ◽  
Bin Bi ◽  
Zhongzhou Zhao ◽  
...  

A fundamental trade-off between effectiveness and efficiency needs to be balanced when designing an online question answering system. Effectiveness comes from sophisticated functions such as extractive machine reading comprehension (MRC), while efficiency is obtained from improvements in preliminary retrieval components such as candidate document selection and paragraph ranking. Given the complexity of the real-world multi-document MRC scenario, it is difficult to jointly optimize both in an end-to-end system. To address this problem, we develop a novel deep cascade learning model, which progressively evolves from the documentlevel and paragraph-level ranking of candidate texts to more precise answer extraction with machine reading comprehension. Specifically, irrelevant documents and paragraphs are first filtered out with simple functions for efficiency consideration. Then we jointly train three modules on the remaining texts for better tracking the answer: the document extraction, the paragraph extraction and the answer extraction. Experiment results show that the proposed method outperforms the previous state-of-the-art methods on two large-scale multidocument benchmark datasets, i.e., TriviaQA and DuReader. In addition, our online system can stably serve typical scenarios with millions of daily requests in less than 50ms.


2021 ◽  
Vol 13 (7) ◽  
pp. 1270
Author(s):  
Chenhui Ma ◽  
Dexuan Sha ◽  
Xiaodong Mu

Unsupervised domain adaptation (UDA) based on adversarial learning for remote-sensing scene classification has become a research hotspot because of the need to alleviating the lack of annotated training data. Existing methods train classifiers according to their ability to distinguish features from source or target domains. However, they suffer from the following two limitations: (1) the classifier is trained on source samples and forms a source-domain-specific boundary, which ignores features from the target domain and (2) semantically meaningful features are merely built from the adversary of a generator and a discriminator, which ignore selecting the domain invariant features. These issues limit the distribution matching performance of source and target domains, since each domain has its distinctive characteristic. To resolve these issues, we propose a framework with error-correcting boundaries and feature adaptation metric. Specifically, we design an error-correcting boundaries mechanism to build target-domain-specific classifier boundaries via multi-classifiers and error-correcting discrepancy loss, which significantly distinguish target samples and reduce their distinguished uncertainty. Then, we employ a feature adaptation metric structure to enhance the adaptation of ambiguous features via shallow layers of the backbone convolutional neural network and alignment loss, which automatically learns domain invariant features. The experimental results on four public datasets outperform other UDA methods of remote-sensing scene classification.


2021 ◽  
Author(s):  
Samreen Ahmed ◽  
shakeel khoja

<p>In recent years, low-resource Machine Reading Comprehension (MRC) has made significant progress, with models getting remarkable performance on various language datasets. However, none of these models have been customized for the Urdu language. This work explores the semi-automated creation of the Urdu Question Answering Dataset (UQuAD1.0) by combining machine-translated SQuAD with human-generated samples derived from Wikipedia articles and Urdu RC worksheets from Cambridge O-level books. UQuAD1.0 is a large-scale Urdu dataset intended for extractive machine reading comprehension tasks consisting of 49k question Answers pairs in question, passage, and answer format. In UQuAD1.0, 45000 pairs of QA were generated by machine translation of the original SQuAD1.0 and approximately 4000 pairs via crowdsourcing. In this study, we used two types of MRC models: rule-based baseline and advanced Transformer-based models. However, we have discovered that the latter outperforms the others; thus, we have decided to concentrate solely on Transformer-based architectures. Using XLMRoBERTa and multi-lingual BERT, we acquire an F<sub>1</sub> score of 0.66 and 0.63, respectively.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingyuan Zhang ◽  
Zequn Zhang ◽  
Zhi Guo ◽  
Li Jin ◽  
Kang Liu ◽  
...  

Target-oriented opinion words extraction (TOWE) seeks to identify opinion expressions oriented to a specific target, and it is a crucial step toward fine-grained opinion mining. Recent neural networks have achieved significant success in this task by building target-aware representations. However, there are still two limitations of these methods that hinder the progress of TOWE. Mainstream approaches typically utilize position indicators to mark the given target, which is a naive strategy and lacks task-specific semantic meaning. Meanwhile, the annotated target-opinion pairs contain rich latent structural knowledge from multiple perspectives, but existing methods only exploit the TOWE view. To tackle these issues, we formulate the TOWE task as a question answering (QA) problem and leverage a machine reading comprehension (MRC) model trained with a multiview paradigm to extract targeted opinions. Specifically, we introduce a template-based pseudo-question generation method and utilize deep attention interaction to build target-aware context representations and extract related opinion words. To take advantage of latent structural correlations, we further cast the opinion-target structure into three distinct yet correlated views and leverage meta-learning to aggregate common knowledge among them to enhance the TOWE task. We evaluate the proposed model on four benchmark datasets, and our method achieves new state-of-the-art results. Extensional experiments have shown that the pipeline method with our approach could surpass existing opinion pair extraction models, including joint methods that are usually believed to work better.


Sign in / Sign up

Export Citation Format

Share Document