scholarly journals Custom-Design of FDR Encodings: The Case of Red-Black Planning

Author(s):  
Daniel Fišer ◽  
Daniel Gnad ◽  
Michael Katz ◽  
Jörg Hoffmann

Classical planning tasks are commonly described in PDDL, while most planning systems operate on a grounded finite-domain representation (FDR). The translation of PDDL into FDR is complex and has a lot of choice points---it involves identifying so called mutex groups---but most systems rely on the translator that comes with Fast Downward. Yet the translation choice points can strongly impact performance. Prior work has considered optimizing FDR encodings in terms of the number of variables produced. Here we go one step further by proposing to custom-design FDR encodings, optimizing the encoding to suit particular planning techniques. We develop such a custom design here for red-black planning, a partial delete relaxation technique. The FDR encoding affects the causal graph and the domain transition graph structures, which govern the tractable fragment of red-black planning and hence affects the respective heuristic function. We develop integer linear programming techniques optimizing the scope of that fragment in the resulting FDR encoding. We empirically show that the performance of red-black planning can be improved through such FDR custom design.

Author(s):  
Antonio Diaz-Calderon ◽  
Chris Hendrickson

AbstractThis article presents an assessment of four management systems to expose the essential characteristics of each management system, including planning techniques, problem representation, concurrency, and flexibility. The experimental part of the research shows that existing management systems can be used to attack a variety of problems. The authors conclude that flexible planning systems are quite beneficial since they can be used to solve a variety of design problems by making small modifications in the definition of their tools.


Author(s):  
George D. Mazur ◽  
Wayne Sarasua ◽  
Janice Daniel

A process under development at the Georgia Institute of Technology to standardize, enhance, and automate planning and project evaluation for transportation projects in rural Georgia is described. The process will incorporate current statewide planning techniques in use at the Georgia Department of Transportation (GDOT) and additional sketch planning techniques that will use existing GDOT data. The purpose of this multimodal transportation planning tool (MMTPT) is to aid GDOT and local agencies in evaluating transportation requirements of rural areas and potential implementation constraints early in the planning process. The tool will include a system-level component to develop a prioritized list of projects by mode for a county and a project-level component to perform more detailed evaluations of roadway project alternatives and multimodal enhancements. The MMTPT will operate in a computerized hybrid system that uses expert system and conventional algorithmic programming techniques. Although organizational, management, and funding constraints that discourage multimodal planning are not overcome, the tool addresses the shortage of analytical planning techniques.


AI Magazine ◽  
2008 ◽  
Vol 29 (4) ◽  
pp. 25 ◽  
Author(s):  
Jorge A, Baier ◽  
Sheila A. McIlraith

Automated Planning is an old area of AI that focuses on the development of techniques for finding a plan that achieves a given goal from a given set of initial states as quickly as possible. In most real-world applications, users of planning systems have preferences over the multitude of plans that achieve a given goal. These preferences allow to distinguish plans that are more desirable from those that are less desirable. Planning systems should therefore be able to construct high-quality plans, or at the very least they should be able to build plans that have a reasonably good quality given the resources available.In the last few years we have seen a significant amount of research that has focused on developing rich and compelling languages for expressing preferences over plans. On the other hand, we have seen the development of planning techniques that aim at finding high-quality plans quickly, exploiting some of the ideas developed for classical planning. In this paper we review the latest developments in automated preference-based planning. We also review various approaches for preference representation, and the main practical approaches developed so far.


1998 ◽  
Vol 13 (2) ◽  
pp. 179-184 ◽  
Author(s):  
ROBERT P. GOLDMAN ◽  
CHITTA BARAL

This workshop brought together researchers concerned with fundamental issues of modelling action, those developing automated planning techniques and those attempting to implement autonomous agents acting in the world. In the past, these research communities have been separate from each other to a surprising extent. Researchers interested in theories of action have busied themselves with finding solutions to the frame and ramification problems, for very expressive theories of action. On the other hand, researchers interested in developing planning systems have typically concentrated on efficiency over expressiveness and assumed away the frame and ramification problems by means of the “STRIPS assumption”. Finally, researchers interested in implementing autonomous agents have found their attention occupied by issues of execution monitoring and sensing.


1999 ◽  
Vol 121 (4) ◽  
pp. 689-694 ◽  
Author(s):  
S. K. Gupta ◽  
D. A. Bourne

Contemporary process planners for sheet metal bending solve the process planning problem for individual parts. Quite often, many different parts can be produced on shared setups. However, plans generated by current process planning systems fail to exploit this commonality between setups and try to generate optimal setups for individual parts. In this paper, we present an algorithm for multi-part setup planning for sheet metal bending. This algorithm takes a set of parts and operation sequences for these parts, and tries to find a shared setup plan that can work for every part in the set. Setup changes constitute a major portion of the production time in batch production environments. Therefore, multi-part setup planning techniques can be used to significantly cut down the total number of setups and increase the overall through-put.


Author(s):  
Álvaro Torralba ◽  
Silvan Sievers

The performance of domain-independent planning systems heavily depends on how the planning task has been modeled. This makes task reformulation an important tool to get rid of unnecessary complexity and increase the robustness of planners with respect to the model chosen by the user. In this paper, we represent tasks as factored transition systems (FTS), and use the merge-and-shrink (M&S) framework for task reformulation for optimal and satisficing planning. We prove that the flexibility of the underlying representation makes the M&S reformulation methods more powerful than the counterparts based on the more popular finite-domain representation. We adapt delete-relaxation and M&S heuristics to work on the FTS representation and evaluate the impact of our reformulation.


1984 ◽  
Vol 1 (2) ◽  
pp. 4-17 ◽  
Author(s):  
Austin Tate

SummaryPlanning systems have been an active research topic within Artificial Intelligence for over two decades. There have been a number of techniques developed during that period which still form an essential part of many of today's planners. This paper introduces the techniques, attempts to classify some of the important research themes in AI planning and describes their historical development.


Author(s):  
Andrew Johnson ◽  
Thomas Wahl

AbstractWe consider the broad problem of analyzing safety properties of asynchronous concurrent programs under arbitrary thread interleavings. Delay-bounded deterministic scheduling, introduced in prior work, is an efficient bug-finding technique to curb the large cost associated with full scheduling nondeterminism. In this paper we first present a technique to lift the delay bound for the case of finite-domain variable programs, thus adding to the efficiency of bug detection the ability to prove safety of programs under arbitrary thread interleavings. Second, we demonstrate how, combined with predicate abstraction, our technique can both refute and verify safety properties of programs with unbounded variable domains, even for unbounded thread counts. Previous work has established that, for non-trivial concurrency routines, predicate abstraction induces a highly complex abstract program semantics. Our technique, however, never statically constructs an abstract parametric program; it only requires some abstract-states set to be closed under certain actions, thus eliminating the dependence on the existence of verification algorithms for abstract programs. We demonstrate the efficiency of our technique on many examples used in prior work, and showcase its simplicity compared to earlier approaches on the unbounded-thread Ticket Lock protocol.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Sign in / Sign up

Export Citation Format

Share Document