Incorporation of micro/nanoparticles of PCL with essential oil of Cymbopogon nardus in bacterial cellulose

Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.

Food Research ◽  
2020 ◽  
Vol 4 (S2) ◽  
pp. 19-23
Author(s):  
M.S. Barre ◽  
F.B. Ali ◽  
M.E.S. Mirghani ◽  
N.F. Hazri ◽  
H. Anuar ◽  
...  

Boswellia carterii (BC) {Burseraceae family} essential oil (EO) were extracted by hydrodistillation process. Gum Arabic (GA) {Acacia senegal} polymer particles containing a BCEO were prepared by spray drying technique. The mean particle size and its distribution, as well as the zeta-potential of the microcapsules, were analyzed and found Z-Average 382±203nm, PDI 0.77±0.3, ZP-25±2.73mV, respectively. Product encapsulation efficiency (EE %) was found at 75±0.8%. The surface morphology of the particles was obtained by scanning electron microscope (SEM). Furthermore, particles moisture content was analyzed by the oven drying method. The efficiency of encapsulation (EE %) was estimated by specifying the content of essential oil in the product. Gas chromatography (GC) coupled with time-of-flight mass spectrometry (TOFMS) analysis of EO has been performed to determine the chemical compounds and their prevalence concentrations respectively. The composition of initial essential oil (added in the emulsion) and the encapsulated essential oil (extracted from spray dried powder) were analyzed and compared. The outcome of the research encourages the high potentiality and usefulness of the product in the food industries sector as a food additive agent, moreover, it suggests for further research to unravel potential implementation of BCEO microcapsules in the food production chain


Cellulose ◽  
2015 ◽  
Vol 23 (1) ◽  
pp. 737-748 ◽  
Author(s):  
Silmara C. Lazarini ◽  
Renata de Aquino ◽  
André C. Amaral ◽  
Fabiana C. A. Corbi ◽  
Pedro P. Corbi ◽  
...  

Cellulose ◽  
2010 ◽  
Vol 17 (6) ◽  
pp. 1203-1211 ◽  
Author(s):  
Liliana C. Tomé ◽  
Lúcia Brandão ◽  
Adélio M. Mendes ◽  
Armando J. D. Silvestre ◽  
Carlos Pascoal Neto ◽  
...  

2017 ◽  
Vol 97 ◽  
pp. 642-653 ◽  
Author(s):  
Sabrina Alves de Oliveira ◽  
Bruno Campos da Silva ◽  
Izabel Cristina Riegel-Vidotti ◽  
Alexandre Urbano ◽  
Paula Cristina de Sousa Faria-Tischer ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dwi Saryanti ◽  
Dian Nugraheni ◽  
Nisa Sindi Astuti

Nanoparticles are used in drug delivery which can increase mass transfer so increase the absorption and effectiveness of the drug. Therefore, its prospect to improve antibacterial and antioxidants activities of betel leaves. The research aimed to preparation and characterization of betel leaf extract using ionic gelation technique. The formulation of nanoparticles from betel leaf extract with ionic gelation method using alginate and CaCl2 with a ratio of 2.5: 1. The characterization of the nanoparticles includes particle size analysis, zeta potential, particle morphology and determination of flavonoid content. Particle size analysis demonstrated that the betel leaf extract nanoparticles had a particle size of 243,03 ± 1,48 nm, zeta potential of -23,0 ± 0,35 mV and morphology of particle showed that a flat shape. The betle leaf exctract nanoparticle positively contained flavonoid with Rf 0.7 equivalent to quercetin. The betel leaf extract can be made nanoparticles with ionic gelation method using alginate and CaCl2.


2019 ◽  
Vol 21 (3) ◽  
pp. 564-574 ◽  
Author(s):  
Torunn Kringlen Ervik ◽  
Nathalie Benker ◽  
Stephan Weinbruch ◽  
Yngvar Thomassen ◽  
Dag G. Ellingsen ◽  
...  

A detailed characterization of particles as a function of particle size in the size range of 10 nm to 10 µm (aerodynamic diameter) collected from a silicon carbide plant in Norway.


2020 ◽  
Vol 18 ◽  
Author(s):  
Yanfang Zhang ◽  
Rina Du ◽  
Pengwei Zhao ◽  
Sha Lu ◽  
Rina Wu ◽  
...  

Background: Quercetin is the main active ingredient of Xanthoceras sorbifolia Bunge. Traditional compatibility theory of traditional Chinese medicine has typically reported a synergistic interaction among multiple components, while the synergistic effects of nanoemulsion have not been fully clarified. Objective: To study preparation and characterization of quercetin-based Mongolia Medicine Sendeng-4 nanoemulsion (NQUE-NE) and its antibacterial activity and mechanisms. Methods: The morphology of the nanoemulsion was observed by transmission electron microscopy (TEM), and the zeta potential, polydispersity index (PDI), and particle size distribution were determined by the nanometer particle size analyze. The stability of nanoemulsion was investigated by light test, high speed centrifugal test and storage experiment at different temperature. The combined bacteriostatic effect of N-QUE-NE was studied in vitro by double-dilution method and checkerboard dilution method. Results: The appearance of N-QUE-NE was pale yellow, clear and transparent. The nanoemulsion particles were spherical and uniformly distributed under TEM. The PDI was 0.052, the average particle size was 19.6nm, and the Zeta potential was -0.2mV. When quercetin nanoemulsion (QUE-NE) was used in combination with tannin nanoemulsion (TAN-NE) and toosendanin nanoemulsion (TOO-NE), it exhibited a synergistic antibacterial effect. However, the combination of QUE-NE and geniposide nanoemulsion (GEN-NE) exhibited an antagonistic effect. It was revealed that the antibacterial effect was in order of quercetin-tannin-toosendanin nanoemulsion (QUE-TAN-TOO-NE) > quercetin-tannin nanoemulsion (QUE-TANNE) > QUE-NE > quercetin-tannin-toosendanin-geniposide nanoemulsion (QUE-TAN-TOO-GEN-NE). Conclusion: This study explored the preparation and efficacy of N-QUE-NE, and the results showed that quercetin, tannin and toosendanin had satisfactory synergistic antibacterial effects. The antagonistic effect of quercetin and geniposide in nanoemulsion indicated that it is not beneficial to the antibacterial effect of Sendeng-4, and further research needs to be conducted to clarify its antibacterial effect.


2007 ◽  
Vol 534-536 ◽  
pp. 117-120 ◽  
Author(s):  
Eun Hee Lee ◽  
Min Ku Lee ◽  
Chang Kyu Rhee

Colloid stability of the suspensions of Ni nanoparticles has been investigated with adding polymeric dispersant in various organic media. We characterized the dispersion stability of Ni nanoparticles by means of visual inspection, transmission profiles measured by Turbiscan, the particle size distribution, and the zeta potential. 0.01 wt% of Ni nanoparticles were found to be optimally dispersed in ethanol among various organic media employed in this study with adding the dispersant (0.6 wt%-2 wt%). As the concentration of the dispersant increased, the particle size decreased in size from 300 nm to 200 nm due to less coalescence. The zeta potential values of the Ni nanoparticles in suspensions with the dispersant were greater than -40mV. Such stable Ni nanoparticle suspensions are attributed to the electrosteric effect of the polymeric dispersant.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 878
Author(s):  
Luz Espinosa-Sandoval ◽  
Claudia Ochoa-Martínez ◽  
Alfredo Ayala-Aponte ◽  
Lorenzo Pastrana ◽  
Catarina Gonçalves ◽  
...  

The food industry has increased its interest in using “consumer-friendly” and natural ingredients to produce food products. In the case of emulsifiers, one of the possibilities is to use biopolymers with emulsification capacity, such as octenyl succinic anhydride modified starch, which can be used in combination with other polysaccharides, such as chitosan and carboxymethylcellulose, in order to improve the capacity to protect bioactive compounds. In this work, multilayer nano-emulsion systems loaded with oregano essential oil were produced by high energy methods and characterized. The process optimization was carried out based on the evaluation of particle size, polydispersity index, and zeta potential. Optimal conditions were achieved for one-layer nano-emulsions resulting in particle size and zeta potential of 180 nm and −42 mV, two layers (after chitosan addition) at 226 nm and 35 mV, and three layers (after carboxymethylcellulose addition) of 265 nm and −1 mV, respectively. The encapsulation efficiency of oregano essential oil within nano-emulsions was 97.1%. Stability was evaluated up to 21 days at 4 and 20 °C. The three layers nano-emulsion demonstrated to be an efficient delivery system of oregano essential oil, making 40% of the initial oregano essential oil available versus 13% obtained for oregano essential oil in oil, after exposure to simulated digestive conditions.


Sign in / Sign up

Export Citation Format

Share Document