scholarly journals Unfired Clay-Cork Granules Bricks Reinforced with Natural Stabilizers: Thermomechanical Characteristics Assessment

2021 ◽  
Vol 7 (12) ◽  
pp. 2068-2082
Author(s):  
Fatima Zohra El Wardi ◽  
Sara Ladouy ◽  
Abdelhamid Khabbazi ◽  
Khalid Ibaaz ◽  
Asmae Khaldoun

Cork is an ecological, natural, and renewable additive, an excellent thermal and acoustic insulator. All these attributes encourage its use in the building sector. Adding this additive to the Earth leads to a more lightweight composite with better thermal performance than the Earth alone. Unfortunately, the mechanical performance of this composite is degraded significantly, limiting its use in construction applications. The authors propose in this study to stabilize the clay-cork composite using natural stabilizers. A chemical stabilization was tested using local quick-lime, in addition to a physical stabilization using natural sheep-wool fibers. The primary purpose is to propose eco-friendly construction material with enhanced thermal and mechanical properties and the lowest environmental impact based on local and ecological raw materials to encourage more sustainable and low-energy constructions. First, physicochemical and mineralogical characterization of used clay was investigated. Then, an experimental investigation was conducted to identify the lime content that allows the optimal stabilization for the used clay. In this context, many different specimens of Bensmim soil stabilized with lime at six many contents 0, 10, 20, 30, 40, 50, and 70% were prepared and tested. The obtained results showed that the optimal lime content for the better stabilization of the used soil is about 30%. Next, an experimental study of thermomechanical properties was conducted on unfired clay bricks mixed with expended cork granules and stabilized by the addition of variable proportions of quick-lime 0, 10 and 30% and sheep-wool fibers 0, 1, and 2%. The mechanical performance of the specimens was investigated in terms of compressive and flexural strengths. At the same time, thermal quality was qualified through evaluating thermal conductivity using the steady-state Asymmetrical Hot Plate test method. The very encouraging experimental findings showed that using lime and sheep-wool fibers at the studied addition content resulted in lightweight composites with lower thermal conductivity and higher compressive and flexural strength than reference samples. The highest thermomechanical performances are obtained with clay-cork blocks reinforced with 30% lime content and 2% sheep-wool fibers. This block recorded values of 583 kg/m3, 0.155 W/m/K, 1.55 MPa, and 3.91 MPa, for bulk density, thermal conductivity, flexural and compressive strength respectively, compared to 765 kg/m3, 0.238 W/m/K, 0.96 MPa and 2.29 MPa for control samples. New material presents lightweight material for both improved thermal and mechanical qualities encouraging its use in building applications. Doi: 10.28991/cej-2021-03091778 Full Text: PDF

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 694 ◽  
Author(s):  
Simona Ioana Borlea (Mureşan) ◽  
Ancuţa-Elena Tiuc ◽  
Ovidiu Nemeş ◽  
Horaţiu Vermeşan ◽  
Ovidiu Vasile

In recent years, natural materials are becoming a valid alternative to traditional sound absorbers due to reduced production costs and environmental protection. This study explores alternative usage of sheep wool as a construction material with improved sound absorbing properties beyond its traditional application as a sound absorber in textile industry or using of waste wool in the textile industry as a raw material. The aim of this study was to obtain materials with improved sound-absorbing properties using sheep wool as a raw material. Seven materials were obtained by hot pressing (60 ÷ 80 °C and 0.05 ÷ 6 MPa) of wool fibers and one by cold pressing. Results showed that by simply hot pressing the wool, a different product was obtained, which could be processed and easily manipulated. The obtained materials had very good sound absorption properties, with acoustic absorption coefficient values of over 0.7 for the frequency range of 800 ÷ 3150 Hz. The results prove that sheep wool has a comparable sound absorption performance to mineral wool or recycled polyurethane foam.


2021 ◽  
Vol 80 (3) ◽  
pp. 1963-1980
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

AbstractRock aggregates constitute the enormous volume of inert construction material used around the globe. The petrologic description as igneous, sedimentary, and metamorphic types establishes the intrinsic formation pattern of the parent rock. The engineering properties of these rocks vary due to the differences in the transformation process (e.g. hydrothermal deposits) and weathering effect. The two most common mechanical tests used to investigate the performance of aggregates are the Los Angeles (LA) and micro-Deval (MD) tests. This study reviewed the geological parameters (including mineralogy, grain and crystal size, grain shape, and porosity) and the relationship to Los Angeles and micro-Deval tests. It was found that high content of primary minerals in rocks (e.g. quartz and feldspar) is a significant parameter for performance evaluation. Traces of secondary and accessory minerals also affect the performance of rocks, although in many cases it is based on the percentage. Furthermore, some studies showed that the effect of mineralogic composition on mechanical strength is not sufficient to draw final conclusions of mechanical performance; therefore, the impact of other textural characteristics should be considered. The disposition of grain size and crystal size (e.g. as result of lithification) showed that rocks composed of fine-grain textural composition of ≤ 1 mm enhanced fragmentation and wear resistance than medium and coarse grained (≥ 1 mm). The effect of grain shape was based on convex and concave shapes and flat and elongated apexes of tested samples. The equidimensional form descriptor of rocks somehow improved resistance to impact from LA than highly flat and elongated particles. Lastly, the distribution of pore space investigated by means of the saturation method mostly showed moderate (R = 0.50) to strong (R = 0.90) and positive correlations to LA and MD tests.


2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2523
Author(s):  
Franciszek Pawlak ◽  
Miguel Aldas ◽  
Francisco Parres ◽  
Juan López-Martínez ◽  
Marina Patricia Arrieta

Poly(lactic acid) (PLA) was plasticized with maleinized linseed oil (MLO) and further reinforced with sheep wool fibers recovered from the dairy industry. The wool fibers were firstly functionalized with 1 and 2.5 phr of tris(2-methoxyethoxy)(vinyl) (TVS) silane coupling agent and were further used in 1, 5, and 10 phr to reinforce the PLA/MLO matrix. Then, the composite materials were processed by extrusion, followed by injection-molding processes. The mechanical, thermal, microstructural, and surface properties were assessed. While the addition of untreated wool fibers to the plasticized PLA/MLO matrix caused a general decrease in the mechanical properties, the TVS treatment was able to slightly compensate for such mechanical losses. Additionally, a shift in cold crystallization and a decrease in the degree of crystallization were observed due to the fiber silane modification. The microstructural analysis confirmed enhanced interaction between silane-modified fibers and the polymeric matrix. The inclusion of the fiber into the PLA/MLO matrix made the obtained material more hydrophobic, while the yellowish color of the material increased with the fiber content.


2021 ◽  
Author(s):  
Yue Zhu ◽  
Qingyu Peng ◽  
Haowen Zheng ◽  
Fuhua Xue ◽  
Pengyang Li ◽  
...  

With the development of multifunction and miniaturization in modern electronics, polymeric films with strong mechanical performance and high thermal conductivity are urgently needed. Two-dimensional transition metal carbides and nitrides (MXenes)...


2021 ◽  
pp. 52098
Author(s):  
Tianhao Ai ◽  
Wutong Feng ◽  
Zhonglai Ren ◽  
Fei Li ◽  
Pingli Wang ◽  
...  

2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Ellann Cohen ◽  
Leon Glicksman

When the transient hot-wire method is used to measure the thermal conductivity of very low thermal conductivity silica aerogel (in the range of 10 mW/m·K at 1 atm) end effects due to the finite wire size and radiation corrections must be considered. An approximate method is presented to account for end effects with realistic boundary conditions. The method was applied to small experimental samples of the aerogel using different wire lengths. Initial conductivity results varied with wire length. This variation was eliminated by the use of the end effect correction. The test method was validated with the NIST (National Institute of Standards and Technology) Standard Reference Material 1459, fumed silica board to within 1 mW/m·K. The aerogel is semitransparent. Due to the small wire radius and short transient, radiation heat transfer may not be fully accounted for. In a full size aerogel panel radiation will augment the phonon conduction by a larger amount.


Sign in / Sign up

Export Citation Format

Share Document