scholarly journals Controlled drug release rate and contemporary issues in oral drug delivery formulations

2021 ◽  
Vol 6 (2) ◽  
pp. 29-36
Author(s):  
Ritu Jain ◽  
Ritesh Tiwari ◽  
Rama Shankar Dubey ◽  
Aarti Tiwari ◽  
Ajay Kumar Shukla
Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


Author(s):  
Amit Prakash ◽  
Amit Prakash

Oral drug delivery is the most commonly used and preferred route of delivery of pharmaceuticals which has been successfully treating wide number of diseases. The advantages of this method of delivery are patient friendly, cost effective, established delivery system, noninvasiveness and convenient, and In the pharmaceutical field it is the most favored drug delivery system. Oral drug delivery systems along with other effective delivery system types that are effective and promising are discussed in this paper based on the mechanism of drug release.


2015 ◽  
Vol 17 (3) ◽  
Author(s):  
Line Hagner Nielsen ◽  
Johan Nagstrup ◽  
Sarah Gordon ◽  
Stephan Sylvest Keller ◽  
Jesper Østergaard ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (33) ◽  
pp. 19587-19599 ◽  
Author(s):  
Zhiping Fan ◽  
Ping Cheng ◽  
Min Liu ◽  
Sangeeta Prakash ◽  
Jun Han ◽  
...  

Polysaccharides-polypeptide derived biohydrogels were formed using hydrazone chemistry as crosslinking strategy, which have controllable drug release rate and many other potential applications, especially in sustained drug delivery and cell scaffold.


Author(s):  
Tanzeena Afroz ◽  
Md. Jasim Uddin ◽  
Md. Shahidul Islam

Recent developments in drug delivery technologies have a great impact on the limitations of traditional oral drug delivery for both the pediatric and geriatric patients. Administration of drug via buccal mucosa is a modern alternative for overcoming low bioavailability, enzymatic inactivation and/or drug degradation in gastrointestinal tract, hence showing rapid onset of action. The aim of the study was to develop doxycycline (antibiotic) loaded buccal films for the treatment of a wide range of systemic and non-systemic bacterial and protozoa infections. The bases of each film were prepared using mucoadhesive polymers, plasticizer, cellulose gums, and instant release film former and penetration enhancer. Optimized films were characterized for weight, width. Length, thickness, surface pH, percentage swelling index, percentage elongation, percentage moisture content, percentage moisture uptake, hydration and in vitro drug release studies. Concentration of different polymers tailored the increase in release rate of doxycycline from the mucoadhesive buccal films. In conclusions, mucoadhesive buccal films can be a substitute route for the delivery of doxycycline as antibacterial or antiprotozoal drug with a faster release rate to reach the site of action.


Sign in / Sign up

Export Citation Format

Share Document