scholarly journals Research Proposal : Growth and yield components of wheat as affected by integrated use of oxalic and phosphoric acid in calcisol

2021 ◽  
Author(s):  
S M Nazmuz Sakib

Wheat is a cereal crop that is mainly used by humans as a source of starch and energy and is also used for livestock around the world. Wheat straw is rich in cellulose fibers, hemicellulose, protein and ash. Wheat is the most cultivated crop in the world and especially in Pakistan. As the population grows rapidly, wheat production needs to be increased to bridge the gap between growth and consumption. The amount of phosphorus required for wheat is much higher than for other crops. It is the most important nutrient needed by the wheat plant and it is important for the development of wheat from seedling to adulthood. Farmers add phosphorus to obtain high yields of wheat on phosphorus-deficient soils. Most of these soils are calcareous and its availability in wheat is due to its reaction with various heavy metals present in the soil. Low molecular weight organic acid oxalic acid in combination with phosphoric acid plays an important role in the mobilization of phosphorus in the soil. Oxalic acid secreted from the roots plays an important role in preventing phosphorus deficiency as it plays an important role in phosphorus mobilization. Agricultural soils of Pakistan are generally calcareous soils with high pH and low organic matter content usually less than one percent and more phosphorus fixation capacity and it has been reported that phosphorus is not sufficient to support prosperous agriculture. These calcareous soils contain more calcium carbonate, so when phosphate is applied, it binds to the soil and is not available to plants.

2021 ◽  
Vol 11 (10) ◽  
pp. 4663
Author(s):  
Raquel Cela-Dablanca ◽  
Carolina Nebot ◽  
Lucia Rodríguez López ◽  
David Ferández-Calviño ◽  
Manuel Arias-Estévez ◽  
...  

Antibiotics in wastewater, sewage sludge, manures, and slurries constitute a risk for the environment when spread on soils. This work studies the adsorption and desorption of the antibiotic cefuroxime (CFX) in 23 agricultural and forest soils, using batch-type experiments. Our results show that the adsorption values were between 40.75 and 99.57% in the agricultural soils, while the range was lower (from 74.57 to 93.46%) in forest soils. Among the Freundlich, Langmuir, and Linear models, the Freundlich equation shows the best fit for the adsorption results. In addition, agricultural soils with higher pH are the ones that present the highest adsorption. Further confirmation of the influence of pH on adsorption is given by the fact that Freundlich’s KF parameter and the Linear model Kd parameter shows a positive correlation with pH and with the exchangeable Ca and Mg values, which are known to affect the charges of the soil colloids and the formation of cationic bridges between adsorbents and adsorbate. In addition, Freundlich’s n parameter shows a positive and significant correlation with the organic matter content, related to the high adsorption taking place on forest soils despite their pH < 5. Regarding desorption, in most cases, it is lower than 1%, which indicates that CFX is adsorbed in a rather irreversible way onto these soils. Overall, these results can be considered relevant regarding their potential impact on environmental quality and public health.


Author(s):  
Noe S Mamon Jr

This study was conducted to enhance the growth and yield performance of cacao trees under mature rubber for one (1) fruiting season through the integration of urea and vermicompost. The experimental design was set in factorial Randomized Complete Block Design with a total of 15 treatment combinations. The treatments were three rates of urea (0, 100 and 200 g/tree) and five rates of vermicompost (0, 1.5, 3.0, 4.5 and 6.0 kg/tree). The trunk circumference, leaf length and width, number of pods developed and harvested, pod and bean character, soil OM%, leaf Nitrogen content and prevalence of pest and diseases were evaluated. The application of 200g urea per tree produced significant increase from 4.86 to 8.44 kg (73.66% increase) in weight of harvested pods and from 23.32 to 26.40 g/pod (13.21% increase) dry bean weight and significant decrease in the pod index from 43.39 to 38.45 (11.36% decrease). Moreover, the heaviest and thickest pod husk was obtained from plants applied with 100 grams urea + 1.5 kg vermicompost. The highest mean number of beans/pod was obtained from trees applied with 100 – 200 g urea + 1.5 – 3.0 kg vermicompost.  The soil organic matter content (%) and leaf N was slightly increased by application of fertilizer treatments. Pod borer infestation and nematode population were significantly affected by application of urea and vermicompost. Application of 100 g urea/tree or 3.5 bags/ha gave the highest return of investment and was the most profitable source of nutrient.


2009 ◽  
Vol 6 (3) ◽  
pp. 245 ◽  
Author(s):  
Achouak El Arfaoui ◽  
Stéphanie Sayen ◽  
Eric Marceau ◽  
Lorenzo Stievano ◽  
Emmanuel Guillon ◽  
...  

Environmental context. The wide use of pesticides for pest and weed control contributes to their presence in underground and surface waters, which has led to a continuously growing interest in their environmental fate. Soils play a key role in the transfer of these compounds from the sprayer to the water as a result of their capacity to retain pesticides depending on the soil components. The knowledge of soil composition should enable one to predict pesticide behaviour in the environment. Abstract. Eight calcareous soils of Champagne vineyards (France) were studied to investigate the adsorption of the herbicide terbumeton (TER). A preliminary characterisation of the soil samples using X-ray diffraction (XRD), elemental and textural analyses, revealed a wide range of soil properties for the selected samples. The adsorption isotherms of TER were plotted for all samples. The determination of soil properties, which significantly correlated with the Kd distribution coefficient, allowed identification of organic matter and CaCO3 as the two main soil components that govern the retention of the herbicide. Organic matter was the predominant phase involved in the retention but its role was limited by the presence of calcite. Finally, the ratio of CaCO3 content to organic matter content was proposed as a useful parameter to predict the adsorption of terbumeton in chalky soils. The evolution of Kd as a function of this ratio was successfully described using an empirical model.


2018 ◽  
Vol 42 (4) ◽  
pp. 420-430
Author(s):  
Judith Prieto Méndez ◽  
Francisco Prieto García ◽  
Nallely Trejo González ◽  
Yolanda Marmolejo Santillán ◽  
Otilio Arturo Acevedo Sandoval

ABSTRACT The accumulation of salts in the soil profile produces conditions that affect the growth of crops. The effects of these conditions on crops and the intensity of these effects depend on the quantity and type of salts that predominate and are also influenced by soil characteristics and climate, among other aspects. The salinization of agricultural soils is a serious problem facing agriculture today. The use of organic amendments has increased in recent years, acting on the texture of the soil, correcting compaction or granularity problems, and influencing chemical and/or biological reactions. The objectives of this work were to analyze the use of compost and vermicompost using different analysis techniques to determine the influence of conditions on the remediation of a saline soil. In saturation extracts of soil, compost, and vermicompost, a Zeta potential value 2.34-2.44 times more negative (more-stable colloids) than that in the soil colloids was observed in the amendments. The values of electrophoretic mobility were more negative in the organic amendments compared with the soil. This is the first time that these parameters have been reported for these purposes and for a saline soil. In this study, the soil has low organic matter content (1.65%), so these amendments are expected to improve soil quality and texture, achieving the recovery of saline soils.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 7 ◽  
Author(s):  
Thomas Keller ◽  
Anthony R. Dexter

The plastic limits (lower plastic limit, PL; and liquid limit, LL) are important soil properties that can yield information on soil mechanical behaviour. The objective of this paper is to study the plastic limits of agricultural soils as functions of soil texture and organic matter (OM) content. The plastic limits were highly related to the clay content. The LL was more strongly correlated with clay than was PL, but the reasons are unclear. Interestingly, PL was virtually unaffected by clay content for soils with clay contents below ~35%. The OM had a strong effect on the plastic limits. This effect was clearly demonstrated when analysing soils of similar texture with a range of OM. We present equations (pedotransfer functions) for estimation of PL, LL, and plasticity index (PI) from soil texture and OM. Finally, we predict that the clay content must be ≥10% for soils without OM to be plastic; however, soils with <10% clay can be plastic if OM is present. More research is needed to investigate OM effects on soil consistency.


2021 ◽  
Author(s):  
Vito Abbruzzese

In many farm systems, both inorganic and organic fertilisers, including manure and slurry, are applied to the soil to replenish nutrient offtake in agricultural products and additional nutrient losses to soil as well as surface water and groundwater. With respect to sole reliance on inorganic fertilisers, the use of manure/slurry as a nutrient resource offers important benefits, including the reuse and recycling of nitrogen (N) and phosphorus (P) within farming systems as well as a reduction in the reliance on agricultural production on finite inorganic fertiliser reserves. There is increasing interest in the extent to which additives can enhance the nutrient value of slurry/manure. However, little is known about the impacts of these amended slurries/manures on the quantity and composition of N and P within agricultural and pasture soils. We report data from incubation experiments in which soils received a range of treatments, including the application of livestock slurry that had received a mixture of commercial additives. Our experiments were designed to understand how slurry that has received additives ultimately affects nutrient availability in organic, clay-loam and sandy-loam grassland soils. The addition of the additives to slurry resulted in a slight increase or no difference in total solids, pH, total N, ammonium-N, total P, total potassium, total magnesium and total sodium compared to the untreated counterpart. We considered the effects of our treatments on a range of agronomically important soil parameters, including Olsen-P, mineral-N, available-K, pH and organic matter content. This experiment aimed to understand the extent to which soil fertility could be enhanced through the application of slurries/manures that have received additives. The application of both amended and unamended slurry treatments on soil led to higher values of NH4-N, available-K, available Mg and pH than the addition of inorganic fertiliser. In addition, no substantial differences were observed between the treatment of the three soils with unamended and amended slurry.


2019 ◽  

<p>Application of municipal sewage sludge (MSS) to agricultural soils is a current practice in EU. European legislation permits its use in agriculture when concentrations of metals in soil do not exceed the maximum permissible limits. In order to study the influence of MSS on cotton yield and soil properties, a filed experiment was conducted in a soil classified as Typic Xerochrepts located in Lamia area, central Greece, for two consecutive years. The experimental design was complete randomized blocks with four treatments: Control (C ), inorganic fertilization (IF), application of 6000 dry kg ha-1 MSS, and 10000 dry SS kg ha-1, each replicated 4 times. The results showed that MSS application in both rates, increased significantly cotton yield compared to control equally to inorganic fertilization. Soil properties, at the end of the second year of MSS application, were significantly affected by MSS application in a positive way i.e. pH decreased slightly, but organic matter content, available phosphorus, total nitrogen concentrations exchangeable potassium and available zinc and copper increased significantly. The potentially toxic elements lead, chromium, and nickel were not significantly affected by MSS application in both application rates compared to control.</p>


2018 ◽  
Vol 7 (5) ◽  
pp. 386-395 ◽  
Author(s):  
Abdellah El Boukili ◽  
Nidae Loudiyi ◽  
Ahmed El Bazaoui ◽  
Abderrahim El Hourch ◽  
M'Hamed Taibi ◽  
...  

The present study was conducted in order to investigate the adsorption and desorption behavior of Mefenpyr-diethyl (MFD) using the batch equilibration technique in four soils, with different ranges of organic matter content, from different regions of Morocco orders of Benimellal (Soil 1), Settat (Soil 2), Sidi Bettach (Soil 3) and EL Hajeb (Soil 4). The adsorption isotherm models Langmuir, linear and Freundlich were used to compare the adsorption capacity of the soils. The results indicated that the Freundlich equation provided the best fit for all adsorption data. The values of KF and Kd ranged from 4.45 to 15.9 and 4.30 to 18.30 L.kg-1 , respectively. The calculated total percentage of desorption values from the Soil 1, Soil 2, Soil 3 and Soil 4 after the four desorption process were 59 %; 55,6 %; 37,5 % and 52,5%, respectively. Highest adsorption and desorption were observed in soil 1, and the lowest was in soil 3. According to the adsorption and desorption results, organic matter and clay seemed to be the most important factors influencing the adsorption capacity of MFD.


HortScience ◽  
2021 ◽  
pp. 1-10
Author(s):  
Metin Turan ◽  
Ertan Yildirim ◽  
Melek Ekinci ◽  
Sanem Argin

Plant biostimulants are microorganisms (PGPR) and/or products obtained from different organic substances that positively affect plant growth and efficiency and reduce the negative effects of abiotic challenges. Effects of biostimulants on the plant growth, yield, mineral content, antioxidant enzyme activity, H2O2, malondialdehyde (MDA), sucrose, and proline contents of cherry tomato (Solanum lycopersicum var. cerasiforme L.) grown in soils with two different characteristics were investigated during a pot study under greenhouse conditions. Soil I was a fertile routinely vegetable-cultivated soil. Soil II had high salinity, high CaCO3 content, and low organic matter content. Commercial biostimulant products Powhumus® (PH), Huminbio Microsense Seed® (SC), Huminbio Microsense Bio® (RE), and Fulvagra® (FU) were used as seed coatings and/or drench solutions. All biostimulant treatments improved the plant growth and yield compared with the control in both soils. All biostimulant applications were more effective in soil II than in soil I. RE was the most effective application for mineral content in soil I, whereas FU was the most effective in soil II. Antioxidant activity, H2O2, MDA, and proline contents were decreased in both soils when biostimulants were used compared with the control. Peroxide (POD) activity was greater with SC1 in soil II. The RE treatment increased the sucrose content in soil II. In conclusion, single and combined use of high-purity fulvic acid and PGPR had positive effects on the growth of cherry tomato in fertile soil and under stressed conditions.


Sign in / Sign up

Export Citation Format

Share Document