scholarly journals Materiality and Human Cognition

2021 ◽  
Author(s):  
Karenleigh A. Overmann ◽  
Thomas Wynn

In this paper, we examine the role of materiality in human cognition. We address issues such as the ways in which brain functions may change in response to interactions with material forms, the attributes of material forms that may cause change in brain functions, and the spans of time required for brain functions to reorganize when interacting with material forms. We then contrast thinking through materiality with thinking about it. We discuss these in terms of their evolutionary significance and history as attested by stone tools and writing, material forms whose interaction endowed our lineage with conceptual thought and meta-awareness of conceptual domains.

2019 ◽  
Vol 19 (1-2) ◽  
pp. 39-58 ◽  
Author(s):  
Karenleigh A. Overmann ◽  
Thomas Wynn

AbstractUsing a model of cognition as extended and enactive, we examine the role of materiality in making minds as exemplified by lithics and writing, forms associated with conceptual thought and meta-awareness of conceptual domains. We address ways in which brain functions may change in response to interactions with material forms, the attributes of material forms that may cause such change, and the spans of time required for neurofunctional reorganization. We also offer three hypotheses for investigating co-influence and change in cognition and material culture.


2021 ◽  
Author(s):  
Karenleigh A. Overmann ◽  
Thomas Wynn

Using a model of cognition as extended and enactive, we examine the role of materiality in making minds as exemplified by lithics and writing, forms associated with conceptual thought and meta-awareness of conceptual domains. We address ways in which brain functions may change in response to interactions with material forms, the attributes of material forms that may cause such change, and the spans of time required for neurofunctional reorganization. We also offer three hypotheses for investigating co-influence and change in cognition and material culture.


2016 ◽  
Vol 12 (1) ◽  
pp. 4178-4187
Author(s):  
Michael A Persinger ◽  
Stanley A Koren

                The capacity for computer-like simulations to be generated by massive information processing from electron-spin potentials supports Bostrom’s hypothesis that matter and human cognition might reflect simulations. Quantitative analyses of the basic assumptions indicate the universe may display properties of a simulation where photons behave as pixels and gravitons control the structural organization. The Lorentz solution for the square of the light and entanglement velocities converges with the duration of a single electron orbit that ultimately defines properties of matter. The approximately one trillion potential states within the same space with respect to the final epoch of the universe indicate that a different simulation, each with intrinsic properties, has been and will be generated as a type of tractrix defined by ±2 to 3 days (total duration 5 to 6 days). It may define the causal limits within a simulation. Because of the intrinsic role of photons as the pixel unit, phenomena within which flux densities are enhanced, such as human cognition (particularly dreaming) and the cerebral regions associated with those functions, create the conditions for entanglement or excess correlations between contiguous simulations. The consistent quantitative convergence of operations indicates potential validity for this approach. The emergent solutions offer alternative explanations for the limits of predictions for multivariate phenomena that could be coupled to more distal simulations.


Concepts stand at the centre of human cognition. We use concepts in categorizing objects and events in the world, in reasoning and action, and in social interaction. It is therefore not surprising that the study of concepts constitutes a central area of research in philosophy and psychology. Since the 1970s, psychologists have carried out intriguing experiments testing the role of concepts in categorizing and reasoning, and have found a great deal of variation in categorization behaviour across individuals and cultures. During the same period, philosophers of language and mind did important work on the semantic properties of concepts, and on how concepts are related to linguistic meaning and linguistic communication. An important motivation behind this was the idea that concepts must be shared, across individuals and cultures. However, there was little interaction between these two research programs until recently. With the dawn of experimental philosophy, the proposal that the experimental data from psychology lacks relevance to semantics is increasingly difficult to defend. Moreover, in the last decade, philosophers have approached questions about the tension between conceptual variation and shared concepts in communication from a new perspective: that of ameliorating concepts for theoretical or for social and political purposes. The volume brings together leading psychologists and philosophers working on concepts who come from these different research traditions.


Author(s):  
Carrie Figdor

Chapter 10 provides a summary of the argument of the book. It elaborates some of the benefits of Literalism, such as less conceptual confusion and an expanded range of entities for research that might illuminate human cognition. It motivates distinguishing the questions of whether something has a cognitive capacity from whether it is intuitively like us. It provides a conceptual foundation for the social sciences appropriate for the increasing role of modeling in these sciences. It also promotes convergence in terms of the roles of internal and external factors in explaining both human and nonhuman behavior. Finally, it sketches some of the areas of new research that it supports, including group cognition and artificial intelligence.


2020 ◽  
Vol 375 (1803) ◽  
pp. 20190495 ◽  
Author(s):  
Natalie Uomini ◽  
Joanna Fairlie ◽  
Russell D. Gray ◽  
Michael Griesser

Traditional attempts to understand the evolution of human cognition compare humans with other primates. This research showed that relative brain size covaries with cognitive skills, while adaptations that buffer the developmental and energetic costs of large brains (e.g. allomaternal care), and ecological or social benefits of cognitive abilities, are critical for their evolution. To understand the drivers of cognitive adaptations, it is profitable to consider distant lineages with convergently evolved cognitions. Here, we examine the facilitators of cognitive evolution in corvid birds, where some species display cultural learning, with an emphasis on family life. We propose that extended parenting (protracted parent–offspring association) is pivotal in the evolution of cognition: it combines critical life-history, social and ecological conditions allowing for the development and maintenance of cognitive skillsets that confer fitness benefits to individuals. This novel hypothesis complements the extended childhood idea by considering the parents' role in juvenile development. Using phylogenetic comparative analyses, we show that corvids have larger body sizes, longer development times, extended parenting and larger relative brain sizes than other passerines. Case studies from two corvid species with different ecologies and social systems highlight the critical role of life-history features on juveniles’ cognitive development: extended parenting provides a safe haven, access to tolerant role models, reliable learning opportunities and food, resulting in higher survival. The benefits of extended juvenile learning periods, over evolutionary time, lead to selection for expanded cognitive skillsets. Similarly, in our ancestors, cooperative breeding and increased group sizes facilitated learning and teaching. Our analyses highlight the critical role of life-history, ecological and social factors that underlie both extended parenting and expanded cognitive skillsets. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals’.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 359
Author(s):  
Maximilian Lenz ◽  
Amelie Eichler ◽  
Andreas Vlachos

Inflammation of the central nervous system can be triggered by endogenous and exogenous stimuli such as local or systemic infection, trauma, and stroke. In addition to neurodegeneration and cell death, alterations in physiological brain functions are often associated with neuroinflammation. Robust experimental evidence has demonstrated that inflammatory cytokines affect the ability of neurons to express plasticity. It has been well-established that inflammation-associated alterations in synaptic plasticity contribute to the development of neuropsychiatric symptoms. Nevertheless, diagnostic approaches and interventional strategies to restore inflammatory deficits in synaptic plasticity are limited. Here, we review recent findings on inflammation-associated alterations in synaptic plasticity and the potential role of the blood–brain interface, i.e., the blood–brain barrier, in modulating synaptic plasticity. Based on recent findings indicating that brain stimulation promotes plasticity and modulates vascular function, we argue that clinically employed non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, could be used for monitoring and modulating inflammation-induced alterations in synaptic plasticity.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3936
Author(s):  
Yannis Spyridis ◽  
Thomas Lagkas ◽  
Panagiotis Sarigiannidis ◽  
Vasileios Argyriou ◽  
Antonios Sarigiannidis ◽  
...  

Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile IoT device of unknown location, using a group of UAVs that were equipped with received signal strength indicator (RSSI) sensors. The UAVs employed measurements of the target’s radio frequency (RF) signal power to approach the target as quickly as possible. A deep learning model performed clustering in the UAV network at regular intervals, based on a graph convolutional network (GCN) architecture, which utilised information about the RSSI and the UAV positions. The number of clusters was determined dynamically at each instant using a heuristic method, and the partitions were determined by optimising an RSSI loss function. The proposed algorithm retained the clusters that approached the RF source more effectively, removing the rest of the UAVs, which returned to the base. Simulation experiments demonstrated the improvement of this method compared to a previous deterministic approach, in terms of the time required to reach the target and the total distance covered by the UAVs.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3691
Author(s):  
María Angeles Martín ◽  
Luis Goya ◽  
Sonia de Pascual-Teresa

Increasing evidence support a beneficial role of cocoa and cocoa products on human cognition, particularly in aging populations and patients at risk. However, thorough reviews on the efficacy of cocoa on brain processes in young adults do not exist precisely due to the limited number of studies in the matter. Thus, the aim of this study was to summarize the findings on the acute and chronic effects of cocoa administration on cognitive functions and brain health in young adults. Web of Science and PubMed databases were used to search for relevant trials. Human randomized controlled studies were selected according to PRISMA guidelines. Eleven intervention studies that involved a total of 366 participants investigating the role of cocoa on cognitive performance in children and young adults (average age ≤25 years old) were finally selected. Findings from individual studies confirm that acute and chronic cocoa intake have a positive effect on several cognitive outcomes. After acute consumption, these beneficial effects seem to be accompanied with an increase in cerebral blood flow or cerebral blood oxygenation. After chronic intake of cocoa flavanols in young adults, a better cognitive performance was found together with increased levels of neurotrophins. This systematic review further supports the beneficial effect of cocoa flavanols on cognitive function and neuroplasticity and indicates that such benefits are possible in early adulthood.


Archaea ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Reema K. Gudhka ◽  
Brett A. Neilan ◽  
Brendan P. Burns

Halococcus hamelinensiswas the first archaeon isolated from stromatolites. These geomicrobial ecosystems are thought to be some of the earliest known on Earth, yet, despite their evolutionary significance, the role of Archaea in these systems is still not well understood. Detailed here is the genome sequencing and analysis of an archaeon isolated from stromatolites. The genome ofH. hamelinensisconsisted of 3,133,046 base pairs with an average G+C content of 60.08% and contained 3,150 predicted coding sequences or ORFs, 2,196 (68.67%) of which were protein-coding genes with functional assignments and 954 (29.83%) of which were of unknown function. Codon usage of theH. hamelinensisgenome was consistent with a highly acidic proteome, a major adaptive mechanism towards high salinity. Amino acid transport and metabolism, inorganic ion transport and metabolism, energy production and conversion, ribosomal structure, and unknown function COG genes were overrepresented. The genome ofH. hamelinensisalso revealed characteristics reflecting its survival in its extreme environment, including putative genes/pathways involved in osmoprotection, oxidative stress response, and UV damage repair. Finally, genome analyses indicated the presence of putative transposases as well as positive matches of genes ofH. hamelinensisagainst various genomes of Bacteria, Archaea, and viruses, suggesting the potential for horizontal gene transfer.


Sign in / Sign up

Export Citation Format

Share Document