Investigation of Mechanical Properties and Impact Strength Depending on the Number of Fiber Layers in Glass Fiber- reinforced Polyester Matrix Composite Materials

2014 ◽  
Vol 56 (6) ◽  
pp. 472-478 ◽  
Author(s):  
İlyas Turkmen ◽  
Nurullah Sinan Koksal
2019 ◽  
Vol 969 ◽  
pp. 502-507
Author(s):  
K. Chandra Shekar ◽  
Balasubramaniyan Singaravel ◽  
S. Deva Prasad ◽  
N. Venkateshwarlu

Advanced continuous polymer matrix composite materials provide considerable increase in flexural property values as compared with their bulk and monolithic counter parts. In this research work the effect of fiber orientation on the flexural strength of epoxy matrix composite materials reinforced with glass fiber was studied. Filament winding technique was employed for fabrication of composite with various fiber orientations. The flexural strength value of the glass fiber reinforced composite was comprehensively studied by means of three point bending flexural test and analysed by scanning electron microscopy. Experiments were conducted as per ASTM standards and it was concluded that reinforcement with 0o orientation of glass fibers shown improved flexural strength as compared to 45o and 90o orientation of fibers.


2018 ◽  
Vol 49 (2) ◽  
pp. 181-199 ◽  
Author(s):  
M Megahed ◽  
AA Megahed ◽  
MA Agwa

Recently, the study of hybrid nanocomposites has attracted much attention because they are highly expected for being used in many applications. In this context, there is an insisting need to investigate the effect of incorporation of silica and carbon particulates nanofillers into epoxy reinforced with woven and nonwoven tissue glass fiber. The influence of incorporation of silica (SiO2) and carbon black nanoparticles (C) with different weight fractions on the tensile properties, impact strength and fatigue performance of epoxy matrix reinforced with two types of E-glass fiber was investigated. The results showed an improvement in tensile properties, impact strength and fatigue life with addition of almost all nanoparticles contents considerably with respect to that of the neat glass fiber reinforced epoxy composites (NGFRE). Hybrid composites filled with 0.5 wt.% C exhibited the highest tensile strength and fatigue performance with an enhancement of 19% and 60% compared to NGFRE, respectively. An increase of 57% and 28% in tensile modulus and impact strength over NGFRE was obtained respectively with hybrid composites filled with 1 wt.% C. Adding 0.25 wt.% SiO2 and 0.25 wt.% C simultaneously showed an improvement in mechanical properties. SEM images of tensile and impact fracture surfaces are presented for CS 0.5 specimens which in turn reveal weak fiber/matrix interface.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 57
Author(s):  
Daniel Pieniak ◽  
Agata Walczak ◽  
Marcin Oszust ◽  
Krzysztof Przystupa ◽  
Renata Kamocka-Bronisz ◽  
...  

The article presents results of experimental studies on mechanical properties of the polymer-composite material used in manufacturing firefighting helmets. Conducted studies included static and impact strength tests, as well as a shock absorption test of glass fiber-reinforced polyamide 66 (PA66) samples and firefighting helmets. Samples were subject to the impact of thermal shocks before or during being placed under a mechanical load. A significant influence of thermal shocks on mechanical properties of glass fiber-reinforced PA66 was shown. The decrease in strength and elastic properties after cyclic heat shocks ranged from a few to several dozen percent. The average bending strength and modulus during the 170 degree Celsius shock dropped to several dozen percent from the room temperature strength. Under these thermal conditions, the impact strength was lost, and the lateral deflection of the helmet shells increased by approximately 300%. Moreover, while forcing a thermal shock occurring during the heat load, it was noticed that the character of a composite damage changes from the elasto-brittle type into the elasto-plastic one. It was also proved that changes in mechanical and elastic properties of the material used in a helmet shell can affect the protective abilities of a helmet.


2019 ◽  
Vol 61 (11) ◽  
pp. 1095-1100 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Kathiravan Subramaniam ◽  
Ng Lin Feng ◽  
Siti Hajar Sheikh MD Fadzullah ◽  
Sivaraos Subramonian

Sign in / Sign up

Export Citation Format

Share Document