scholarly journals Collision-Free Path Planning for Efficient Inspection of Free-Form Surface by Using a Trigger Probe

2021 ◽  
Author(s):  
Zhengcai Zhao ◽  
Yao Li ◽  
Yucan Fu ◽  
Dawei Ding

Measurement path planning plays an essential role in on-machine measurement, which is often required to be time-saving and collision-free. This paper proposes a novel path planning methodology and develops an automatic collision avoidance strategy for measurement. Measurement points are generated by Contour section sampling (CSS), Grid mesh sampling (GMS), and Locally dense sampling (LDS) on the free-form surface. Afterwards, a shortest path algorithm (SPA) and a non-interference path algorithm (NIPA) are developed respectively. The simulations show that the proposed method can reduce the total inspection distance to nearly 7.82% than the original one. The presented path planning method can measure the surface of large aerospace parts directly by using a trigger probe.

Author(s):  
Feiyan Han ◽  
Juan Wei ◽  
Bin Feng ◽  
Wu Zhang

The manufacturing technology of an integral impeller is an important indicator for measuring the manufacturing capability of a country. Its manufacturing process involves complex free-form surface machining, a time consuming and error-prone process, and the tool path planning is considered as a critical issue of free-form surface machining but still lacks a systematic solution. In this paper, aiming at the tool path planning of the impeller channel, a quasi-triangular tool path planning method based on parametric domain template trajectory mapping is proposed. The main idea is to map the template trajectory to physical domain by using the mapping model of parametric domain to the physical domain to obtain the actual machining path. Firstly, the trajectory mapping model of parametric domain to physical domain is established using the morphing technique, and the template trajectory mapping method in the parametric domain is given. Secondly, the clean-up boundary of the impeller channel is determined in the parametric domain, and the quasi-triangular template trajectory of the impeller channel is defined. Finally, taking a certain type of impeller as an example, the quasi-triangular tool path of the impeller channel is calculated, and the tool path calculation time of this method is compared with that of the traditional isometric offset method. The result shows that the computational efficiency is improved by 45% with this method, which provides a new method for the rapid acquisition of NC machining tool path for impeller channels. In addition, the simulation and actual machining are carried out, the results show that the shape of actual cutting traces on the surface of the impeller channel is quasi-triangular, showing that this method is effective and feasible.


1996 ◽  
Vol 14 (6) ◽  
pp. 860-867
Author(s):  
Noriyuki Kawarazaki ◽  
Kan Taguchi

2021 ◽  
Author(s):  
Yuezhi (Sean) Liu ◽  
Fengfeng (Jeff) Xi ◽  
Reza Faieghi

Abstract Unlike solid parts, the deformation caused by a contact force during robotic polishing of sheet metal parts has become an issue. In this paper, a path planning method is purposed to resolve this issue. This method includes three steps. The first step is to apply the Hertz theory to compute the contact areas between the tool head and the free-form surface of a sheet metal part. The second step is to apply the finite element method to compute the deformation under a contact force. The third step is to reconstruct the deformed free-form surface and modify the contact areas accordingly. The underlying problem is dynamic because the deformed surface shape changes as the tool head moves along a tool path. Based on the proposed method, an optimal path can be determined to achieve full coverage of the entire surface without over or under polishing.


Author(s):  
Andreas Rothfuss ◽  
Oliver Oesterle ◽  
Daniel Bürgy ◽  
Charles Nwankwo ◽  
Frank Schneider ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881992 ◽  
Author(s):  
Junde Qi ◽  
Bing Chen

As for the fact that the majority of current researches take the technology of tool-path planning for free-form surface only as a geometrical problem, which is not suitable for belt grinding because of the elastic deformation of the grinding belt that leads to a variable contact, in this article, the tool-path planning method for belt grinding is developed from the elastic contact point of view. Based on the Hertzian contact theory and taking the grinding force into consideration, a calculation method of the contact area between the belt and the workpiece is presented. Then, a tool-path planning model is presented based on the real contact area to meet the full coverage. In addition, an optimization model based on the constant scallop-height is further developed to meet the high form accuracy of the workpiece. First, a modified model for the material removal depth is developed based on the Preston equation. Then, according to the curvature of the contact surface, three situations are analyzed and the calculation methods of the tool-path interval are given. Finally, experiments on the simulation blade are conducted, and the experimental results show the effectiveness of the method in this article.


Sign in / Sign up

Export Citation Format

Share Document