scholarly journals Fexofenadine HCl Immediate Release Tablets: In vitro Characterization and Evaluation of Excipients

2013 ◽  
Vol 16 (1) ◽  
pp. 1-9
Author(s):  
Shahriar Ahmed ◽  
Mehrina Nazmi ◽  
Ikramul Hasan ◽  
Sabiha Sultana ◽  
Shimul Haldar ◽  
...  

Fexofenadine HCl immediate release tablets were designed to increase the dissolution rate by using superdisintegrants. Different formulations of Fexofenadine HCl were prepared by direct compression method. These formulations were evaluated for hardness, thickness, friability, weight variation, disintegration time, and in vitro dissolution study. The drug release from the formulations were studied according to USP specification (USP paddle method at 50 rpm for 60 minutes) maintaining the temperature to 37°C. Sodium starch glycolate, cross carmellose sodium, crospovidone (kollidon CL), ludiflash and xanthan gum were used in 3%, 6% and 8% concentrations as superdisintegrants. Thus, the ratio of superdisintegrants was changed whereas all the other excipients as well as the active drug (Fexofenadine HCl) remained same in every formulation. Here, 0.001N HCl was used as dissolution medium according to USP and absorbances were determined by using UV spectrophotometer at 217 nm. The F-3 and F-6 formulation prepared by 8% of Sodium starch glycolate and 8% of Cross carmellose sodium showed 99.99% drug release within 30 minutes and 45 minutes, respectively. The disintegration times of F-3 and F-6 formulation were within 9 seconds. The interactions between drug and excipients were characterized by FTIR spectroscopic study. DOI: http://dx.doi.org/10.3329/bpj.v16i1.14483 Bangladesh Pharmaceutical Journal 16(1): 1-9, 2013

2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
Hemant A. Deokule ◽  
Smita S. Pimple ◽  
Praveen D. Chaudhari ◽  
Ajit S. Kulkarni

Fast dissolving strips are used as novel approaches, as it dissolves rapidly in mouth and directly reaches the systemic circulation. In present research work, an attempt has been made to prepare mouth dissolving strips of Metoclopramide hydrochloride by using a novel film former Pullulan by solvent casting method. A33 full factorial design was utilized for the optimization of the effect of independent variables such as the amount of Pullulan, amount of PEF 400, amount of SSG on mechanical properties, and % drug release of strips. The drug compatibility studies using FTIR and DSC studies formulated strips were characterized for their physicochemical parameter like weight variation, visual appearance, folding endurance, thickness, disintegration time, drug content, and in vitro dissolution studies. FTIR and DSC studies revealed that the polymer is compatible with the drug. It was found that the optimum levels of the responses for a fast release strip could be obtained at low levels of Pullulan, PEG400, and SSG. The prepared strip was clear transparent and had a smooth surface. The surface pH was found 4.8 to 5.2 be in the range of to which is close to salivary pH, which indicates that strips may have less potential to irritate the oral mucosa, thereby they are comfortable. The drug release was found to be between 90.94 to 100.5% in 2 min. The in-vitro disintegration time of strips prepared with Pullulan was in the range of 19 to 57 sec. As the concentration of SSG increases the decrease in the disintegration time of strips a decrease. The dissolution rate increased with an increase in the concentration of SSG. Hence, it can be inferred that the fast dissolving oral strips of Metoclopramide hydrochloride may produce rapid action thereby improving bioavailability and enhance the absorption by avoiding the first-pass effect.


2015 ◽  
Vol 18 (2) ◽  
pp. 157-162
Author(s):  
Samira Karim ◽  
Mohiuddin Ahmed Bhuiyan ◽  
Md Sohel Rana

This work aims at the design of a sustained release formulation of glimepiride which is currently available in the treatment of type 2 diabetes mellitus and to investigate the effect of polymers on the release profile of glimepiride. Glimepiride sustained release tablets were prepared by direct compression method using different ratios of various release retarding polymers such as carbopol, ethyl cellulose, methocel K4 MCR, methocel K15 MCR, methocel K100 MCR and xanthum gum. These formulations were also compared with glimepiride immediate release tablets. The prepared tablets were subjected to various physical parameter tests including weight variation, friability, hardness, thickness, diameter, etc. In vitro dissolution studies of the formulations were done at pH 6.8 in phosphate buffer using USP apparatus 2 (paddle method) at 50 rpm. The percent releases of all the formulations (30) were 73.11%- 98.76% after 8 hours. The release pattern followed zero order kinetics and the release of the drug was hindered by the polymers used in the study. On the other hand, 100% drug was released within 1 hour from the immediate release tablet of glimepiride. The study reveals that the polymers used have the capacity to retard the release of the drug from the sustained release tablets and the more is the amount of the polymer in the formulation the less is the release of drug showing more retardation of drug release.Bangladesh Pharmaceutical Journal 18(2): 157-162, 2015


2021 ◽  
Vol 10 (1) ◽  
pp. 59-67
Author(s):  
Mahipal Shakkarwal ◽  
Dr. Mukesh Sharma ◽  
Dr. Ram Garg ◽  
Shankar Lal Soni ◽  
Gopal Kumar Paswan ◽  
...  

The demands for fast dissolving tablets have received ever increasing day by day during the last 10-15 years for the onset of action. In the present study, the effect of superdisintegrant was compared with synthetic super disintegrants and other conventional super disintegrants in the of fast dissolving tablet formulation of Meclofenamate. Meclofenamate is an antihypertensive drug and in case of hypertension immediate treatment is required so the proposed investigation is totally based to provide the suitable treatment for hypertension. In the present work 9 formulations of Fast dissolving tablets of Cilnidipine were prepared by using Synthesized Co-proceed was evaluated and compiles with the official standards, parameters and specifications. Various formulations were prepared using four different superdisintegrant namely- kyron T-304, sodium starch glycolate, cross carmelose sodium with three concentrations (2%, 4%, 6%) by direct compression method. The blend was evaluated for pre-compression parameters like Angle of repose , bulk density , tapped density , and then tablet  evaluated post-compression parameters like thickness , drug content , hardness , weight variation  , wetting time , friability , disintegration time , dissolution time, drug release study. Formulation A8 showed the lowest disintegration time and in-vitro dissolution studies recorded that formulation A8 showed 98.64% drug release at the end of 3 minutes. The best formulations were also found to be stable and optimized formulations were subjected to the stability studies as per ICH guideline and standards.


Author(s):  
MEGHANA RAYKAR ◽  
MALARKODI VELRAJ

Objective: This study aims to Formulate Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate with the increase in bioavailability and patient compliance. Methods: Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate were developed by full factorial design at 32levelsand prepared by direct compression method using super integrants like sodium starch glycolate, Ludiflash. The tablets were compressed into compacts on a 10 station tablet machine. The bulk drug was characterised by determining, MP, Solubility, pH and FTIR spectra. Results: The weight variation, hardness and diameter, thickness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies, and stability study, tablet thickness, weight variation and drug content post compression parameters remained consistent and reproducible. All the formulations showed, almost 100 percent of drug release within 75 min. Formulations F1, F2 and F3 were prepared with 5 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F1<F2<F3. Formulations F4, F5 and F6 were prepared with 10 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F4<F5<F6. Formulations F7, F8 and F9 were prepared with 15 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F7<F8<F9. Conclusion: It is concluded that the amount of superdisintegrants decreases disintegration time of tablets, decreases wetting time, increases the cumulative % drug release causes better absorption.


2021 ◽  
Vol 24 (2) ◽  
pp. 168-179
Author(s):  
Tanoy Saha ◽  
Md Mahbubul Alam ◽  
Dilshad Noor Lira ◽  
Abu Shara Shamsur Rouf

The study aimed to develop and evaluate an immediate-release tablet dosage form of Linagliptin. Different concentrations (ranges 5-10%) of super-disintegrants, Croscarmellose sodium (CCS), and Sodium starch glycolate (SSG) were used to prepare nine tablet dosage forms (F1 to F9) through the direct compression method. The compatibility of the formulations was evaluated by FTIR to reveal any possible drug-excipient interactions and it was proved to be compatible with all formulations. Precompression (bulk density, tapped density, Carr’s index, Hausner’s ratio, and angle of repose) and post-compression parameters (weight variation, hardness, thickness, and friability) were analyzed for all tablets and the results were found satisfactory as well as within limits as per USP guidelines. All the formulated batches (F1 to F9) exhibited disintegration of tablets within 2 minutes, where formulation F9 represented the lowest disintegration time (51±3 sec) which was also found significantly better than the marketed product (310±5 sec). In terms of drug dissolution, 90% of drug release was observed for all nine formulations within 45 minutes and formulation F9 (5% CCS and 5% SSG) illustrated the rapid and highest dissolution rate compared to the marketed one’s, 100% drug release at 20 minutes and 91.77 % drug release at 30 minutes successively. The respective data sets of drug release were mathematically fitted to several kinetic models and for all formulations, drug release pattern obeyed first-order kinetics amongst those, formulation F2 (r2= 0.98), F4 (r2= 0.99), F5 (r2= 0.98), and F9 (r2= 0.97) were found to be best fitted in this kinetic norm. Based on disintegration time and dissolution data comparison to a brand leader market product, F9 was experienced as the best formulation. Furthermore, it was observed that if SSG and CCS were combined, then these two parameters were more improved compared to their separate uses. Thus, incorporation of the optimum amount of super-disintegrants in a formulation showed rapid swelling, faster disintegration as well as ease of dissolution of tablet dosage forms. Bangladesh Pharmaceutical Journal 24(2): 168-179, 2021


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


2015 ◽  
Vol 14 (9) ◽  
pp. 1659-1666
Author(s):  
Ü Gönüllü ◽  
P Gürpınar ◽  
M Üner

Purpose: To formulate double-layer tablets of lornoxicam (LRX) prepared by direct compression method and evaluate their physical and drug release  characteristics.Methods: The outer layer of tablets, composed of microcrystalline cellulose (MCC), starch and lactose, incorporated tan initial or prompt dose of the drug (4 mg) for immediate release. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP K90) and carbomer, in varying concentrations, were used to prepare the tablet cores for sustained drug delivery. Weight variation, dimensions, hardness,  tensile strength, friability and disintegration time of the tablets were evaluated. Drug release from double-layer tablets as well as kinetic models of drug release were determined after validating the method used for the quantification of the drug. The analytical method for quantification of LRX by UV spectroscopy was validated and verified for linearity, intra-day and inter-day precision, accuracy, recovery and specifity.Results: Tablet cores based on HPMC and HPMC:PVP K90 mixture displayed better compression and flow properties (good and fair to passable) than those  formulated with PVP K90 and carbomer (poor). Satisfactory results were obtained from all the tablet formulations met compendial requirements. The slowest drug release rate was obtained with tablet cores based on PVP K90 (1.21 mg%.h-1). Drug release followed Higuchi kinetic model and the tablet cores released drug by diffusion/polymer relaxation or diffusion/erosion.Conclusion: Double-layer tablet formulation of lornoxicam based on HPMC or HPMC-PVP mixture is suitable for the treatment of inflammatory and painful conditions.Keywords: Lornoxicam, Controlled release, Double-layer tablets, Non-steroidal antiinflammatory drug, Oral delivery


2014 ◽  
Vol 3 (3) ◽  
pp. 243-246 ◽  
Author(s):  
P.K. Lakshmi ◽  
D. Lavanya ◽  
M.M. Husnien Ali

The main aim of the present research was to develop a fast dissolving oral polymeric film with good mechanical properties, faster disintegration and dissolution when placed on tongue. Donepezil hydrochloride (DPH) is prescribed in the treatment of mild to moderate Alzheimer’s disease (AD). The polymers selected for preparing films were sodium alginate (SA), poly vinyl alcohol (PVA) and guar gum (GG). Three batches of films were prepared by solvent casting method with sodium alginate, sodium alginate & PVA and with the combination of sodium alginate & guar gum. From these three batches, three optimized film formulations S3, SP7 and SG8 were selected based on disintegration time. To these three selected film formulations, superdisintegrants sodium starch glycolate (SSG), cross carmellose sodium (CCS) and cross povidone (CP) were added at a concentration of 4% w/w of polymer to improve the disintegration time. The films prepared with or without superdisintegrants were compared for fast releasing properties. Based on DT and in vitro dissolution data, S3CP was selected as the best formulation among the all formulations.DOI: http://dx.doi.org/10.3329/icpj.v3i3.17892 International Current Pharmaceutical Journal, February 2014, 3(3): 243-246


Sign in / Sign up

Export Citation Format

Share Document