scholarly journals Ascidian neuropeptides, peptide hormones, and their receptors: structures, biological functions, and evolutionary aspects.

Author(s):  
Honoo Satake
2019 ◽  
Vol 20 (11) ◽  
pp. 2760 ◽  
Author(s):  
Julie Maja Leth ◽  
Katrine Zinck Leth-Espensen ◽  
Kristian Kølby Kristensen ◽  
Anni Kumari ◽  
Anne-Marie Lund Winther ◽  
...  

Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic three-fingered folding topology with three long loops projecting from a disulfide-rich globular core. The majority of the members of this protein domain family contain only a single LU domain, which can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary aspects of this protein domain family with special emphasis on variations in their consensus disulfide bond patterns. Furthermore, we will present selected cases where missense mutations in LU domain−containing proteins leads to dysfunctional proteins that are causally linked to genesis of human disease.


2015 ◽  
Vol 57 ◽  
pp. 177-187 ◽  
Author(s):  
Jennifer N. Byrum ◽  
William Rodgers

Since the inception of the fluid mosaic model, cell membranes have come to be recognized as heterogeneous structures composed of discrete protein and lipid domains of various dimensions and biological functions. The structural and biological properties of membrane domains are represented by CDM (cholesterol-dependent membrane) domains, frequently referred to as membrane ‘rafts’. Biological functions attributed to CDMs include signal transduction. In T-cells, CDMs function in the regulation of the Src family kinase Lck (p56lck) by sequestering Lck from its activator CD45. Despite evidence of discrete CDM domains with specific functions, the mechanism by which they form and are maintained within a fluid and dynamic lipid bilayer is not completely understood. In the present chapter, we discuss recent advances showing that the actomyosin cytoskeleton has an integral role in the formation of CDM domains. Using Lck as a model, we also discuss recent findings regarding cytoskeleton-dependent CDM domain functions in protein regulation.


2015 ◽  
Vol 58 ◽  
pp. 115-131 ◽  
Author(s):  
Ayane Motomitsu ◽  
Shinichiro Sawa ◽  
Takashi Ishida

The ligand–receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone–receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.


2018 ◽  
Author(s):  
F Errabie ◽  
A Elmekkaoui ◽  
W Khannoussi ◽  
G Kharrasse ◽  
Z Ismaili

1994 ◽  
Vol 72 (04) ◽  
pp. 578-581 ◽  
Author(s):  
T McNally ◽  
S E Cotterell ◽  
I J Mackie ◽  
D A Isenberg ◽  
S J Machin

Summaryβ2 glycoprotein-I (β2GPI), a cofactor for antiphospholipid antibody (aPA) binding, binds to many anionic macromolecules including heparin. The nature of this interaction with heparin is not well understood and its effect on the purported biological functions of β2GPI is unknown.We have examined the interactions of dermatan sulphate (DS) and different pharmaceutical preparations of heparin with β2GPI by crossed immunoelectrophoresis (CIE) and investigated the effect of these agents on plasma levels of p2GPI antigen (β2GPI: Ag) by a standardised enzyme linked immunosorbent assay (ELISA). P2GPI aPA cofactor activity (β2GPI:Cof) was also measured using a modified solid phase an-ti-phosphatidylserine (aPS) ELISA. CIE results confirmed a heparin-β2GPI interaction with unfractionated (UF) heparin. β2GPI:Ag levels were unaffected by any of the preparations investigated. There were no significant differences in β2GPI:Cof activities of the samples containing LMW heparins or DS but levels of β2GPI:Cof were increased in samples containing UF sodium and calcium heparin preparations (0.5 IU/ml Monoparin, p <0.05, and 10 IU/ml Liquemin and Calcipa-rine, p <0.05).


1966 ◽  
Vol 51 (1) ◽  
pp. 88-94 ◽  
Author(s):  
A. Villanueva ◽  
S. J. H. Ashcroft ◽  
J. P. Felber

ABSTRACT The synthetic ACTH peptides β1–39 and β1–24 stimulated lipolysis as determined by the rat epididymal fat pad in vitro. The stimulating effect of these peptides was diminished by prior incubation of the peptides with antibodies produced by the guinea-pig against ACTH. The stimulating effect of these hormones was also diminished by the double antibody system used in the radio-immunoassay of ACTH and other peptide hormones, in which incubation with antiserum is followed by precipitation of the antigen-antibody complex by rabbit anti-guinea-pig-γ-globulin.


Sign in / Sign up

Export Citation Format

Share Document