scholarly journals Influence of Postemergence Dicamba/Glyphosate Timing and Inclusion of Acetochlor as a Layered Residual on Weed Control and Soybean Yield

2021 ◽  
Vol 3 ◽  
Author(s):  
Sarah Striegel ◽  
Maxwel C. Oliveira ◽  
Ryan P. DeWerff ◽  
David E. Stoltenberg ◽  
Shawn P. Conley ◽  
...  

Roundup Ready 2 Xtend® [glyphosate- and dicamba-resistant (DR)] soybean is a novel trait option for postemergence (POST) control of herbicide-resistant broadleaf weeds in soybean. With increased use of labeled dicamba products POST in DR soybean and recommendations to include a soil-residual herbicide POST (e.g., layered residual approach), research on how combinations of these approaches influence weed control, weed seed production, and soybean grain yield is warranted. The objective of this research was to evaluate the effects of (1) flumioxazin applied preemergence (PRE) followed by (fb) dicamba plus glyphosate applied POST at different crop developmental stages and (2) acetochlor POST as a layered residual approach on weed control, weed seed production, and soybean yield to determine the optimal POST timing in DR soybean. A field study was conducted in Wisconsin at three sites in 2018 and four sites in 2019 to evaluate flumioxazin (43.4 g ai ha−1, WDG 51%) PRE fb dicamba (560 g ae ha−1, SL) plus glyphosate (1,101 g ae ha−1, SL) POST in DR soybean at three stages: early-POST (EPOST, V1-V2), mid-POST (MPOST, V3-V4), and late-POST (LPOST, V5-V6/R1) with or without a soil-residual herbicide POST (acetochlor, 1,262 g ai ha−1, ME). Weed community composition was site-specific; difficult-to-control broadleaf species included giant ragweed (Ambrosia trifida L.) and waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer]. Dicamba plus glyphosate applied MPOST and LPOST provided greater control, weed biomass reduction, and density reduction of giant ragweed and waterhemp when compared with EPOST treatments. Giant ragweed and waterhemp had not reached 100% cumulative emergence at EPOST, and plants that emerged after EPOST produced seed. There was some benefit to including acetochlor as a layered residual at EPOST as indicated by a residual by POST timing interaction for waterhemp density reduction. Complete waterhemp control was not attained at one site-year. For remaining site-years, dicamba plus glyphosate applied MPOST (V3-V4) provided season-long weed control, reduced weed seed production, and optimized soybean grain yield compared with other POST treatments. Results highlight the importance of timely POST applications and suggest utilization of a POST layered residual needs to be timed appropriately for the window of active weed species emergence.

2019 ◽  
pp. 1683-1687
Author(s):  
Mário Luiz Ribeiro Mesquita ◽  
Leonaldo Alves de Andrade ◽  
Walter Esfrain Pereira

The aim of this study was to evaluate the effect of mulching with dry leaves of babassu palm (Orbygnia phalerata Mart.) on germination of weed seed bank on rice tiller number and on grain yield of rice and maize in Maranhão state, northeastern Brazil. In the field the experimental design was a split plot in a randomized complete block with 15 replications. Rice, maize and rice intercropped with maize were allocated to the main plots and mulching treatments with unprocessed whole dried palm leaves (0 and 23 t ha-1) to the subplots. Germination of the weed seed bank was assessed after crop harvest in the greenhouse by means of a collection of three soil samples per subplot (n = 270) with an open metal device of 25 cm in length x 16 cm in width x 3 cm in height as sampling unit. Soil samples were placed in aluminum trays in the greenhouse and irrigated daily. The germinated weed species were identified and counted every fifteen days. The results showed that mulching can reduce germination in the weed seed bank up to 55% and promoted a significant increase in rice tiller number from 63 to 95 m-2, grain yield of rice from 1,077 to 2,251 kg ha-1 and grain yield of maize from 1,137 to 2,293 kg ha-1. Therefore, mulching can be recommended for weed control in smallholder farming of rice and maize crops.


2013 ◽  
Vol 27 (4) ◽  
pp. 798-802 ◽  
Author(s):  
RaeLynn A. Butler ◽  
Sylvie M. Brouder ◽  
William G. Johnson ◽  
Kevin D. Gibson

Greenhouse experiments were conducted in 2011 to evaluate the effect of mowing frequency and mowing height on four summer annual weed species (large crabgrass, barnyardgrass, giant ragweed, and common lambsquarters). Plants were clipped at three heights (5, 10, or 20 cm) and at two frequencies (single clipping or repeated clippings at the same height) to simulate mowing. A nonclipped control was also grown for each species. When clipped once, large crabgrass, barnyardgrass, and giant ragweed produced at least 90% of the total dry weight (DW) of the nonclipped plants, and common lambsquarters produced at least 75%. A single cut was generally not sufficient to prevent weed seed production or kill any of the weeds in this study. Repeated clipping reduced large crabgrass, giant ragweed, and common lambsquarters reproductive DW to 46, 27, and 10% respectively, of the nonclipped control. Barnyardgrass plants that were repeatedly clipped produced between 0 and 8% of the seed DW of nonclipped plants, depending on clipping height. Repeated clipping reduced weed total DW to below 40% for all species compared to nonclipped plants. Our results suggest that, unless combined with other weed management practices, repeated mowing may be necessary to limit the growth and seed production of these weed species.


Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 175-183 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Sharon Clay

Approaches to crop production that successfully reduce weed seed production can benefit farming systems by reducing management inputs and costs. A 5-yr rotation study was conducted in order to determine the effects that interactions between crop rotation, tillage, and amount of herbicide and fertilizer (management inputs) have on annual grass and broad-leaved weed seed production and fecundity. There were 10 crop rotation and tillage system combinations and three levels of management inputs (high, medium, and low). Green and yellow foxtail were the major weed species, and together they yielded between 76 and 93% of collected weed seeds. From 1990 to 1994, average grass weed seed productions were 7.3 by 103, 3.7 by 1036.1 by 103and 5.7 by 103seeds m−-2, whereas average broad-leaved weed seed productions were 0.4 by 103, 0.4 by 103, 1.4 by 103, and 0.4 by 103seeds m−-2in crop rotations using conventional tillage (moldboard plow), conservation tillage, no tillage, and ridge tillage, respectively. Crop rotations using conventional or ridge tillage consistently produced more grass and broad-leaved weed seeds, especially in low-input plots. There was little difference in weed seed production among input levels for crop rotations using conservation tillage. Comparing rotations that began and ended with a corn crop revealed that by increasing crop diversity within a rotation while simultaneously reducing the amount of tillage, significantly fewer grass and broad-leaved weed seeds were produced. Among the rotations, grass and broad-leaved weed fecundity were highly variable, but fecundity declined from 1990 to 1994 within each rotation, with a concomitant increase in grass and broad-leaved weed density over the same period. Crop rotation in combination with reduced tillage is an effective way of limiting grass and broad-leaved weed seed production, regardless of the level of management input applied.


2021 ◽  
Vol 1 (3) ◽  
pp. 1-9
Author(s):  
O. Ariunaa ◽  
T. Erdenenzorig ◽  
B. Dondov

Our country has provided about 52% of vegetables from domestic production, the rest part imported others from outside. Thus, imports of potatoes and vegetables have been reduced last year, for this reason, main vegetable seeds, were produced domestically and provided over 80 percent of the country’s demand. In the future domestic production demand of vegetable goal set working to provide by 100 percent from government our country in this connection issues urgent need to solve sowing seeds, variety supply, seed production, and plant protection. According to our research, during the growing season, 150-350 weeds growing per 1m2 of rounded onions shows that the amount of crop damage is relatively high. For the purpose of control against weeds in the onion field with 3 repetitions of 7 variants of 2 types of herbicides are conducted experimental research. These include; pre-emergent Estamp (Stomp) herbicide applied in doses 2.5; 3.5 l/ha that controls all types of weeds, but showed results of 65.2-72.4%. The growing season during a selective post-emergent of Gaur herbicide in doses 0.7; 0.9l/ ha used against broadleaf and grassy weeds that became clear of weed species density reduced by 92.7-93.4%. It was tested in this study Pendimethalin, 33% + Oxyfluorfen 24 % mixture herbicides have reduced the number of weeds by 92.4-94.1%.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 807-812 ◽  
Author(s):  
Paul R. Nester ◽  
Thomas R. Harger ◽  
James P. Geaghan

Field studies were conducted to document the response of itchgrass [Rottboellia exaltata(L.) L.f. ♯3ROOEX] in soybean [Glycine max(L.) Merr. ‘Forrest’] to selected herbicides and postplanting cultivation. Early cultivation stimulated emergence of itchgrass seedlings; however, when plots were cultivated two or three times, itchgrass was effectively removed from the tilled area. Cultivation had no effect on the density, height, standing biomass, or seed production of itchgrass plants in the soybean row but did increase soybean yield. In response to a density reduction of 90%, the average weight, number of tillers and branches, and seed production of single itchgrass plants increased by a factor of 2.9, 3.1, 2.3 and 2.6, respectively, in trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine)-treated plots. Individual plants did not increase growth following density reduction by a postemergence application of diclofop {2-[4-(2,4-dichlorophenoxy)phenoxy] propanoic acid}. Itchgrass plants competing for the entire season in plots treated with trifluralin reduced soybean yield approximately 21 g per weed, while itchgrass recovering from diclofop treatment and competing the remainder of the season reduced yield approximately 5 g per weed.


1998 ◽  
Vol 12 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Stephen E. Hart ◽  
Gordon K. Roskamp

Field studies were conducted in 1995 and 1996 at three locations in Illinois to determine soybean response to combinations of thifensulfuron and bentazon. Thifensulfuron was applied at 2.2 to 8.8 g ai/ha alone or in combination with 280 to 560 g/ha of bentazon. Soybean injury 30 d after treatment ranged from 0 to 22% when thifensulfuron was applied alone at 2.2 g/ha. Increasing thifensulfuron rate to 8.8 g/ha increased soybean injury to a range of 12 to 44%. Soybean grain yield was significantly reduced compared to the yield of untreated soybean when thifensulfuron was applied at 4.4 and 8.8 g/ha in two of five and four of five experiments, respectively. The addition of bentazon to thifensulfuron consistently reduced soybean injury and stunting. In many cases, increasing the bentazon rate to 420 g/ha decreased soybean injury from thifensulfuron to a greater extent than 280 g/ha. In cases where thifensulfuron decreased soybean yield, the addition of 420 or 560 g/ha of bentazon restored yields to levels that were not lower than untreated soybeans. These studies demonstrate that thifensulfuron at 2.2 to 8.8 g/ha in combination with bentazon at 420 g/ha may be safely applied to soybean for broadleaf weed control.


2016 ◽  
Vol 27 (1) ◽  
pp. 9-19
Author(s):  
MJ Khatun ◽  
M Begum ◽  
MM Hossain

An experiment was conducted at the Agronomy Field Laboratory and net house of the Department of Agronomy, Bangladesh Agricultural University, Mymensingh from November 2012 to March 2014. Wheat (cv. BARI Gom-26) was sown with two tillage methods viz., (i) conventional tillage and (ii) stale seedbed technique and nine weeding regimes viz., (i) Unweeded (Control), (ii) Weed free, (iii) Hand weeding (HW) at 15 Days after sowing (DAS), (iv) HW at 15 and 45 DAS, (v)   HW at 25 and 45 DAS (vi) HW at 25 DAS (vii) HW at 25 and 60 DAS (viii) 2,4-D amine at 15 DAS and (ix) 2,4-D amine at 15 DAS + HW at 60 DAS. The design was split-plot with three replications where tillage method was assigned to the main plots and weeding regime to the sub plots. Conventionally tilled plots were infested with 12 weed species of which the five most dominant weed species in descent order were Polygonum coccineum L, Chenopodium album L, Cynodon dactylon L., Sonchus arvensis L. and Cyperus rotundus L. In stale seedbed out of 15 weed species Digitaria sanguinalis L. and Hedyotis corymbosa (L.) Lamk. was dominant instead of Chenopodium album L. and Sonchus arvensis L. identified in conventional tillage. In soil weed seed bank study, 28 species were identified in conventional tillage and 30 in stale seedbed. Among them annuals were dominant over perennials and broadleaves over grasses and sedges. In conventional tillage, the five most dominant weed species in descent order were Chenopodium album L., Hedyotis corymbosa L., Sonchus arvensis L., Polygonum coccineum L. and Rotala ramosior L. while in stale seedbed, five dominant weeds were Polygonum coccineum L., Chenopodium album L., Cynodon dactylon L., Lindernia procumbens Krock. and L. hyssopifolia L. Except the number of spikelets spike-1, rest of all other yield attributes and yield of wheat were affected significantly by the tillage methods. Stale seedbed technique yielded the higher grain (3.54 t ha-1) and the conventional tillage yielded the lower (3.13 t ha-1). The effect of weeding regime was significant on wheat except plant height and 1000-grain weight. The highest grain yield (3.85 t ha-1) was recorded from weed free treatment followed by 2,4-D amine at 15 DAS and lowest (3.22 t ha-1) from control. Interaction between the treatments was also. The highest grain yield (4.09 t ha-1) was recorded from the stale seedbed technique kept weed free followed by 2,4-D amine at 15 DAS and lowest grain yield (3.04 t ha-1) recorded from the conventional tillage retained unweeded.Progressive Agriculture 27 (1): 9-19, 2016


Weed Science ◽  
1984 ◽  
Vol 32 (4) ◽  
pp. 460-467 ◽  
Author(s):  
Russell S. Moomaw ◽  
Alex R. Martin

Season-long weed control has been a goal of some producers of irrigated corn (Zea maysL.) to reduce competition, lessen weed seed production, facilitate crop harvest, improve water efficiency (particularly with furrow irrigation), and improve aesthetic properties of fields. Field experiments were conducted for 3 yr on sprinkler-irrigated corn on a loamy fine sand. Five herbicides applied at layby generally provided season-long control of grass weeds and reduced weed seed production up to 100%. Pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine] was particularly effective. Yields of irrigated corn were not increased by layby herbicide application. Use of corn rows spaced 91 cm apart and use of a shorter, early-maturing, horizontal-leaf corn cultivar resulted in greater weed growth and weed seed production than did use of 76-cm rows and a taller, full-season, upright-leaf corn cultivar. After nearly complete weed control with herbicides for 2 yr, withholding herbicide use in the third year allowed weed growth which reduced corn yield. Indications were that weed control efforts need to be continuous in irrigated corn production.


Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 16-19 ◽  
Author(s):  
L. M. Wax

Delayed planting or “stale seedbed” for weed control in close-drilled (20-cm rows) soybeans [Glycine max(L.) Merr. ‘Amsoy’] was evaluated for 3 years. The system combined final seedbed preparation 3 to 6 weeks before planting with herbicide application at planting time. The best control of six weed species and highest soybean yields were obtained bya,a,a-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) application at the time of seedbed preparation followed by 3-(3,4-dichlorophenyl)-1-methylurea (linuron) application at planting and by linuron application at planting without the early trifluralin application. Applications of 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat) at planting, either with or without trifluralin treatments, resulted in less weed control and lower soybean yields than comparable treatments with linuron. However, even the best treatments failed to provide the weed control necessary to prevent substantial soybean yield reduction in heavy infestations of weeds that emerge in large numbers after planting, and that resist the phytotoxic action of the herbicides.


Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 654-659 ◽  
Author(s):  
Daniel A. Ball

Changes in the weed seedbank due to crop production practices are an important determinant of subsequent weed problems. Research was conducted to evaluate effects of primary tillage (moldboard plowing and chisel plowing), secondary tillage (row cultivation), and herbicides on weed species changes in the soil seedbank in three irrigated row crop rotational sequences over a 3-yr period. The cropping sequences consisted of continuous corn for 3 yr, continuous pinto beans for 3 yr, or sugarbeets for 2 yr followed by corn in the third year. Cropping sequence was the most dominant factor influencing species composition in the seedbank. This was partly due to herbicide use in each cropping sequence producing a shift in the weed seedbank in favor of species less susceptible to applied herbicides. A comparison between moldboard and chisel plowing indicated that weed seed of predominant species were more prevalent near the soil surface after chisel plowing. The number of predominant annual weed seed over the 3-yr period increased more rapidly in the seedbank after chisel plowing compared to moldboard plowing unless effective weed control could be maintained to produce a decline in seedbank number. In this case, seedbank decline was generally more rapid after moldboard plowing. Row cultivation generally reduced seedbanks of most species compared to uncultivated plots in the pinto bean and sugarbeet sequences. A simple model was developed to validate the observation that rate of change in the weed seedbank is influenced by type of tillage and weed control effectiveness.


Sign in / Sign up

Export Citation Format

Share Document